Patents Examined by William M McCalister
  • Patent number: 11454993
    Abstract: A flow rate control apparatus calculates a resistance flow rate, which is a flow rate of a fluid flowing through the fluid resistor, based on a first pressure measured by a first pressure sensor and a second pressure measured by a second pressure sensor, converts the resistance flow rate to a first valve flow rate, which is the flow rate of the fluid passing through a first valve, based on the first pressure, converts the resistance flow rate to a second valve flow rate, which is the flow rate of the fluid passing through a second valve, based on the second pressure, controls the first valve so that the deviation between a first set flow rate and the first valve flow rate becomes small, and controls the second valve so that the deviation between a second set flow rate and the second valve flow rate becomes small.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: September 27, 2022
    Assignee: HORIBA STEC, Co., Ltd.
    Inventor: Kazuya Tokunaga
  • Patent number: 11448535
    Abstract: In order to accurately calculate an estimated flow rate by a dynamic constant volume method, a flow rate calculation system including a tank into which fluid flows, an inflow line through which the fluid flows into the tank, and a pressure sensor that detects the pressure inside the tank is adapted to include: a pressure change data storage part that stores pressure change data indicating a temporal change in the pressure detected by the pressure sensor during an inflow period; a flow rate calculation part that calculates the estimated flow rate during the inflow period based on a pressure change rate; and a flow rate correction part that, on the basis of first pressure detected by the pressure sensor after a predetermined time has elapsed after the inflow period and second pressure included in the pressure change data and higher than the first pressure, corrects the estimated flow rate.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: September 20, 2022
    Assignee: HORIBA STEC, Co., Ltd.
    Inventors: Masanori Terasaka, Koji Imamura, Osamu Horinouchi, Yasuhiro Isobe
  • Patent number: 11435765
    Abstract: A valve device including an outlet port, a first valve unit with a first valve element for setting a first throttle opening for influencing a first airflow of pressurised air which is to be output at the outlet port or is to be released via the outlet port, a first throttle control loop for the closed-loop control of the first throttle opening according to a first setpoint, a pressure control loop for the closed-loop pressure control of an outlet pressure present at the outlet port to a pressure setpoint amid the use of a first throttle control loop as a subordinate control loop, wherein on closed-loop pressure control the pressure control loop specifies a first throttle setpoint to the first throttle control loop as the first setpoint, wherein the valve device is further configured to provide a throttle setting function and, within the throttle setting function, to limit the first throttle opening to a first limitation value and/or within the throttle setting function to specify a first direct setpoint which
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: September 6, 2022
    Assignee: Festo SE & Co. KG
    Inventors: Heiko Patz, Ulrich Sixt, Sebastian Müller
  • Patent number: 11435764
    Abstract: Mass flow controllers and methods for controlling mass flow controllers are disclosed. A method includes providing a gas through a thermal mass flow sensor of the mass flow controller and processing a sensor signal from the thermal mass flow sensor to produce a flow signal. A total nonlinearity characteristic function is determined based on nonlinearity effects on the flow signal and includes a first and second nonlinearity component function based on a first and second source of nonlinearity respectively. The total nonlinearity characteristic function is calibrated, and the first nonlinearity component function is adjusted responsive to changes in the first source of nonlinearity, after which the total nonlinearity characteristic function is updated. The flow signal is corrected to produce a corrected flow signal using the total nonlinearity characteristic function. A valve of the mass flow controller is controlled using the corrected flow signal and a setpoint signal.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: September 6, 2022
    Assignee: Hitachi Metals, Ltd.
    Inventor: Alexei V. Smirnov
  • Patent number: 11435209
    Abstract: The present disclosure describes an apparatus, method, and system of regulating a detector flow of a field flow fractionator. In an embodiment, the apparatus includes (1) a detector flow meter, where the detector flow meter is configured to measure a detector flow from the field flow fractionator, (2) a channel pressure meter, where the channel pressure meter is configured to measure a channel pressure of the field flow fractionator, (3) at least one control valve, where an inlet of the at least one control valve is connected to an outlet of the channel pressure meter, (4) where the detector flow meter is configured to set a channel pressure set point of the channel pressure meter, and (5) where the channel pressure meter is configured to actuate the at least one control valve to maintain a channel pressure of the field flow fractionator at the channel pressure set point.
    Type: Grant
    Filed: May 16, 2020
    Date of Patent: September 6, 2022
    Assignee: WYATT TECHNOLOGY CORPORATION
    Inventor: Steven P. Trainoff
  • Patent number: 11428335
    Abstract: A pressure valve is configured to be selectively coupled to a vessel and includes a housing including a vent aperture configured to provide fluid communication between an internal cavity of the housing and ambient air surrounding the pressure valve, an accessory aperture configured to couple an accessory to the housing, and a seal seat positioned within the internal cavity fluidly between the vent aperture and the accessory aperture. The pressure valve includes a pressure control assembly including a seal configured to break a sealing engagement with the seal seat to provide fluid communication between the vessel and the vent aperture in response to a desired positive pressure being reached within the vessel. The seal is configured to break the sealing engagement with the seal seat to provide fluid communication between the vessel and the vent aperture in response to an operator moving an actuator of the pressure control assembly.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: August 30, 2022
    Assignee: Spike Brewing LLC
    Inventors: Benjamin Caya, Adam J. Hellman, Ryan Scott Dauss
  • Patent number: 11428246
    Abstract: In a steam valve driving apparatus according to an embodiment, a control valve permits or blocks a flow of hydraulic oil from a supply port to an opening direction piston chamber. A dump valve blocks or permits the flow of the hydraulic oil from the opening direction piston chamber to a discharge port. A blocking valve permits or blocks a flow of the hydraulic oil from an accumulator to a closing direction piston chamber. The control valve permits the flow of control oil from the closing direction piston chamber to the discharge port in a state where the flow of hydraulic oil from the supply port to the opening direction piston chamber is permitted.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: August 30, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventor: Hidekazu Miyajima
  • Patent number: 11421796
    Abstract: A hydraulic system comprises a valve distributor comprising one or more sections connectable to respective uses, a supply apparatus comprising a pump and a supply channel, a discharge channel connected to a low-pressure tank, a use signal channel coming from the section of the valve distributor and further comprises a hydraulic regulating device connected via said channels which includes a 2-position 3-way proportional valve configured so as to provide operative fluid at a conditioned pressure, different with respect to the pressure that is characteristic of the operative condition of use, to the supply apparatus and at least one proportional pressure reducing valve.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: August 23, 2022
    Assignee: WALVOIL S.P.A.
    Inventors: Ulderico Busani, Davide Mesturini
  • Patent number: 11402248
    Abstract: A flow rate assembly can include a fluid flow interface portion having a front facing wall and a back facing wall. The flow interface portion can include an inlet passage within the fluid flow interface portion, an outlet passage within the fluid flow interface portion, at least one inlet aperture extending through the front facing wall of the fluid flow interface portion into the inlet passage, and at least one outlet aperture extending through the back facing wall of the fluid flow interface portion into the outlet passage. In some cases, the fluid flow interface portion includes a plug forming at least a portion of the inlet passage.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: August 2, 2022
    Assignee: Blue-White Industries, Ltd.
    Inventors: Robert E. Gledhill, III, John T. Nguyen, Patrick Michael Murphy, Keith R. Petros, Jennifer A. Tsuyuki, Taylor L. Gledhill, Jason Alan Woolard, William M. McDowell, Darrell B. Freeman, Raul Vazquez
  • Patent number: 11391417
    Abstract: In one embodiment, a pipeline interchange is described where a first product flows through a first pipeline and a second product flows through a second pipeline. A pipeline interchange is connected downstream to both the first pipeline and the second pipeline, wherein the pipeline interchange blends the first product flowing through the first pipeline with the second product flowing through the second pipeline. A third pipeline is connected downstream to the pipeline interchange, wherein the third pipeline flows a blended product created from the blending of the first product and the second product in the pipeline interchange. An automated analyzer can be situated downstream of the pipeline interchange capable of physical and/or chemically analyzing the blended product and generating blended data.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: July 19, 2022
    Assignee: Phillips 66 Company
    Inventors: Paul Rady, Marisa Purificato, Franklin Uba, Ayuba Fasasi
  • Patent number: 11384857
    Abstract: An example valve includes a seat element; an outer piston configured to be seated against the seat element at when the valve is in a closed position to block fluid flow from a first port of the valve to a second port of the valve; an inner piston disposed partially within the outer piston and configured to be seated against the outer piston when the valve is in the closed position to block fluid flow from the second port to the first port; and a setting spring applying a biasing force on the inner piston in a distal direction. The valve can operate in: (i) a first mode of operation wherein fluid is received at the first port and relieved to the second port, and (ii) a second mode of operation, wherein fluid is received at the second port and relieved to the first port.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: July 12, 2022
    Assignee: Sun Hydraulics, LLC
    Inventor: Bernd Zähe
  • Patent number: 11385216
    Abstract: In one embodiment, a pipeline interchange flows a product through an upstream pipeline. An automated analyzer is connected to the upstream pipeline to analyze different physical and/or chemically properties in the product and generate data from the product without extracting a sample from the upstream pipeline. An automatic splitter is placed downstream of the automated analyzer, capable of receiving and interpreting the data from the automated analyzer and directing the refined petroleum product into at least three different downstream pipelines, wherein at least one of the downstream pipelines is a transmix pipeline.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: July 12, 2022
    Assignee: Phillips 66 Company
    Inventors: Paul Rady, Marisa Purificato, Franklin Uba, Ayuba Fasasi
  • Patent number: 11378233
    Abstract: In one embodiment, a pipeline interchange is described where a first product flows through a first pipeline and a second product flows through a second pipeline. In this embodiment, a first product automated analyzer is situated near the first pipeline to physical and/or chemically analyze the first product and generate first product data. Additionally, in this embodiment, a second product automated analyzer is situated near the second pipeline to physical and/or chemically analyze the second product and generate second product data. A pipeline interchange is connected downstream to both the first pipeline and the second pipeline, wherein the pipeline interchange blends the first product flowing through the first pipeline with the second product flowing through the second pipeline. A third pipeline is connected downstream to the pipeline interchange, wherein the third pipeline flows a blended product created from the blending of the first product and the second product in the pipeline interchange.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: July 5, 2022
    Assignee: Phillips 66 Company
    Inventors: Paul Rady, Marisa Purificato, Franklin Uba, Ayuba Fasasi
  • Patent number: 11378567
    Abstract: In one embodiment, a process is taught where the process begins by flowing a first product through a first pipeline and flowing a second product through a second pipeline. In this embodiment, the first product in the first pipeline is analyzed with a first product automated analyzer that is capable of physical and/or chemically analyzing the first product in the first pipeline and generating a first product data. Additionally, in this embodiment, the second product in the second pipeline is analyzed with a second product automated analyzer that is capable of physical and/or chemically analyzing the second product in the second pipeline and generating a second product data. The process then produces a blended product by mixing both the first product and the second product within a pipeline interchange which is connected downstream to both the first pipeline and the second pipeline.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: July 5, 2022
    Assignee: Phillips 66 Company
    Inventors: Paul Rady, Marisa Purificato, Franklin Uba, Ayuba Fasasi
  • Patent number: 11378234
    Abstract: In one embodiment, a process is taught where the process begins by flowing a first product through a first pipeline and flowing a second product through a second pipeline. The process then produces a blended product by mixing both the first product and the second product within a pipeline interchange which is connected downstream to both the first pipeline and the second pipeline. The blended product then flows from the pipeline interchange to a third pipeline that is connected downstream of pipeline interchange. The blended product is analyzed in the third pipeline with an automated analyzer that is capable of physical and/or chemically analyzing the blended product in the third pipeline and generating blended data.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: July 5, 2022
    Assignee: Phillips 66 Company
    Inventors: Paul Rady, Marisa Purificato, Franklin Uba, Ayuba Fasasi
  • Patent number: 11372430
    Abstract: A method for operating a valve of a pressure vessel system includes determining an actual pressure difference between an inlet pressure at an inlet of the valve and an outlet pressure at an outlet of the valve, and enabling the valve if the actual pressure difference is lower than or equal to a maximum admissible pressure difference of the valve.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: June 28, 2022
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Andreas Pelger, Stefan Schott
  • Patent number: 11358157
    Abstract: A pressure regulator comprises a primary fluid inlet for connection to a source of high pressure fluid, a fluid outlet for connection to a space to receive the high pressure fluid, a convergent-divergent nozzle having an upstream convergent section, a throat and a downstream divergent section, the primary fluid inlet being in fluid communication with the convergent section of the nozzle; and an outlet pipe having an upstream end arranged around but radially spaced from the outlet of the divergent section of the nozzle, the outlet pipe arranged to receive fluid flow from the outlet of the divergent section of the nozzle and conduct the fluid flowing from the nozzle to the fluid outlet.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: June 14, 2022
    Assignee: GOODRICH CORPORATION
    Inventors: Mateusz Pawlucki, Mateusz Molfa
  • Patent number: 11360496
    Abstract: The invention relates to a valve device (1) having a pressure regulator (3) for a flowing gas and a housing (4). The pressure regulator (3) includes a diaphragm (31), a spring (34), a control actuator (32), and a control seat (33). The control actuator (32) includes a plate-like portion (32?) and a rod-like portion (32?) adjacent to one side of the plate-like portion (32?), the control seat (31) encompassing the rod-like portion (32?) of the control actuator (32). The diaphragm (31) and the control actuator (32) are mechanically coupled to each other such that an axial movement of the control actuator (32) moves the diaphragm (31). In addition, the spring (34) and the control actuator (32) are mechanically coupled to each other. The control seat (33) limits a movement of the control actuator (32). In one state, the control seat (33) and the control actuator (32) prevent the gas from flowing. The control seat (33) is configured as a ring arranged in a recess (40) of the housing (4).
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: June 14, 2022
    Assignee: TRUMA GERAETETECHNIK GMBH & CO. KG
    Inventor: Dennis Reininger
  • Patent number: 11353134
    Abstract: An operating structure of a pilot-operated solenoid valve is provided. The pilot-operated solenoid valve includes a valve body having a main valve orifice and a pilot valve orifice to open and close the main valve orifice. The pilot valve orifice communicates with an accommodating chamber of the valve body. The operating structure includes a knob, an adjustment rod, and a water stop nut. The knob is positioned and fitted to an opening of the accommodating chamber. The adjustment rod is hermetically fitted in the accommodating chamber. One end of the adjustment rod is threadedly connected to the knob, and the other end of the adjustment rod is connected to the water stop nut. The adjustment rod is driven to move axially by rotation of the knob for driving the water stop nut to control the opening and closing of the main valve orifice.
    Type: Grant
    Filed: July 5, 2020
    Date of Patent: June 7, 2022
    Assignee: HARDA INTELLIGENT TECHNOLOGIES CO., LTD.
    Inventors: Kesheng Peng, Yulin Qiu, Shengsen Zhan
  • Patent number: 11353127
    Abstract: An example counterbalance valve includes: a poppet configured to be subjected to a fluid force by fluid received at a first port, and a fluid force by a pilot pressure fluid signal received at a pilot port; a first setting spring disposed in a first chamber and applying a first biasing force on the poppet; and a second setting spring disposed in a second chamber and applying a second biasing force on the poppet, wherein the first chamber and the second chamber are vented to an external environment of the counterbalance valve, wherein the second setting spring is in parallel with the first setting spring such that an equivalent biasing force acting on the poppet in the distal direction comprises a sum of the first biasing force and the second biasing force.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: June 7, 2022
    Assignee: Sun Hydraulics, LLC
    Inventor: Bernd Zähe