Patents Examined by Yuqing Xiao
  • Patent number: 11686845
    Abstract: A lidar receiver that includes a photodetector circuit can be controlled so that the detection intervals used by the lidar receiver to detect returns from fired laser pulse shots are closely controlled. Such control over the detection intervals used by the lidar receiver allows for close coordination between a lidar transmitter and the lidar receiver where the lidar receiver is able to adapt to variable shot intervals of the lidar transmitter (including periods of high rate firing as well as periods of low rate firing). The lidar receiver can define the detection intervals based on a region in the field of view that a laser pulse shot is targeting (e.g., setting longer detection intervals for laser pulse shots targeting a horizon region, setting shorter detection intervals for laser pulse shots targeting a region that intersects within the ground within a relatively short distance of the lidar system).
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: June 27, 2023
    Assignee: AEYE, Inc.
    Inventors: Naveen Reddy, Allan Steinhardt, Luis Dussan, Joel Benscoter, Alex Liang, Philippe Feru, Igor Polishchuk
  • Patent number: 11675062
    Abstract: Various technologies described herein pertain to context aware real-time power adjusting for steerable lidar. A lidar system can include a laser source (e.g., FMCW) configured to emit an optical signal. The lidar system can further include a scanner configured to direct the optical signal emitted by the laser source from the lidar system into an environment. The optical signal can be directed over a field of view in the environment during time periods of frames. The lidar system can further include a controller configured to modulate a power of the optical signal emitted by the laser source between the frames and/or within one or more of the frames. The controller can modulate the power of the optical signal emitted by the laser source based on a position of the lidar system in the environment and a direction in which the optical signal is to be transmitted into the environment.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: June 13, 2023
    Assignee: GM CRUISE HOLDINGS LLC
    Inventors: Kyle Vogt, Lutfollah Maleki
  • Patent number: 11668829
    Abstract: Distance ambiguities arising from indirect time-of-flight (ToF) measurements are resolved by using additional information from two or more coded-modulation measurements. An indirect ToF measurement is performed for a pixel of an image processor, to obtain a value indicative of an apparent distance to an imaged object or scene. First and second coded-modulation measurements are also performed, using respective combination of modulation code and reference signals, such that correlation peaks corresponding to these measurements overlap and cover respective first and second adjoining ranges of distances to imaged objects. First and second mask values are determined from the correlation values obtained from the coded-modulation measurements and are used to determine whether the value indicating the apparent distance indicates an actual distance within the first range of distances or within the second range of distances.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: June 6, 2023
    Assignee: Infineon Technologies AG
    Inventors: Armin Schoenlieb, Hannes Plank
  • Patent number: 11662444
    Abstract: The LiDAR system includes a coherent receiver disposed in a reference path. The coherent receiver includes a 90° optical hybrid to receive a portion of an optical beam along the reference path and a local oscillator (LO) signal to generate multiple output signals. The coherent receiver includes a first photodetector to receive a first and a second output signal to generate a first mixed signal, and a second photodetector to receive a third and a fourth output signal to generate a second mixed signal. The LiDAR system further includes a processor to combine the first mixed signal and the second mixed signal to generate a combined reference signal to suppress a negative image of a reference beat frequency signal to estimate a phase noise of the optical source to determine range and velocity information of the target.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: May 30, 2023
    Assignee: Aeva, Inc.
    Inventors: Ryan Wayne Going, Kumar Bhargav Viswanatha, Pradeep Srinivasan, Srikanth Kuthuru
  • Patent number: 11650316
    Abstract: A light detection and ranging (LiDAR) core is provided that transmits optical beams, and detects return optical beams. The transmitted optical beams are antiphase chirps that sweep a frequency band, and the sweep of the antiphase chirps includes multiple sub-sweeps over respective sub-bands of the frequency band. The system routes the transmitted optical beams that are launched towards a target, and receives light incident upon the target into the return optical beams. The system simultaneously measures and thereby produces multiple simultaneous measurements of first and second beat frequencies per sweep of the antiphase chirps, from the transmitted and returned optical beams, and includes a simultaneous measurement of the first and second beat frequencies per sub-sweep of the multiple sub-sweeps. And the system determines a range and velocity of the target from the multiple simultaneous measurements of the first and second beat frequencies per sweep of the antiphase chirps.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: May 16, 2023
    Assignee: Aeva, Inc.
    Inventors: Mina Rezk, Neeraj Tayal
  • Patent number: 11650296
    Abstract: Designs and implementations of light detection and ranging (LiDAR) systems that project light at a set of different wavelength division multiplexed (WDM) wavelengths based on WDM optical designs to reduce the number of components, complexity of LiDAR optical systems, the weight and cost of LiDAR systems for a wide range of applications.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: May 16, 2023
    Inventor: Xiaotian Steve Yao
  • Patent number: 11644550
    Abstract: A method for optical distance measurement is suggested, wherein a first distribution of times-of-flight of light of detected photons of transmitted measurement pulses is determined, which is stored in a first memory area of a memory unit. The first distribution of times-of-flight of light is assigned to time intervals of a first plurality of time intervals and frequency portions of the first distribution above a predetermined cut-off frequency are reduced or suppressed by means of a low pass filter in a reduction step, so that a second distribution of times-of-flight of light is generated. The second distribution is assigned to time intervals of a second plurality of time intervals and the blocking frequency of the low pass filter is selected to be smaller than or equal to half of the reciprocal value of a smallest interval width of the second plurality of time intervals.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: May 9, 2023
    Assignee: Microvision, Inc.
    Inventor: Wolfgang Birnbacher
  • Patent number: 11635520
    Abstract: The present invention provides a measuring apparatus and a measuring method in which a relative moving velocity of a target to be measured or a separation displacement of the target to be measured can be accurately measured even in a case where the target to be measured is moved. In a measuring apparatus, a relative moving velocity of a target to be measured and a separation displacement of the target to be measured can be measured in consideration of the influence of Doppler shift that occurs due to the movement of the target to be measured in an in-plane direction, and thus, even in a case where the target to be measured is moved in the in-plane direction, the relative moving velocity of the target to be measured and the separation displacement of the target to be measured can be accurately measured.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: April 25, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shinichi Oshima, Yoshito Isei
  • Patent number: 11635495
    Abstract: A lidar system comprises a lidar transmitter and a control circuit. The lidar transmitter fires laser pulse shots into a field of view and comprises a variable amplitude scan mirror for directing the laser pulse shots at targeted range points in the field of view (FOV). The control circuit (1) controls changes in a tilt amplitude of the variable amplitude scan mirror and (2) schedules the laser pulse shots according to a plurality of criteria, including criteria that take into account a settle time arising from controlled changes in the tilt amplitude. These controlled changes can include (1) a first tilt amplitude corresponding to a wide FOV coverage zone within the FOV and (2) a second tilt amplitude corresponding to a narrow FOV coverage zone within the FOV, wherein the second tilt amplitude is less than the first tilt amplitude.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: April 25, 2023
    Assignee: AEYE, Inc.
    Inventors: Joel Benscoter, Luis Dussan, Allan Steinhardt, Philippe Feru, Igor Polishchuk
  • Patent number: 11624809
    Abstract: The laser radar includes: a light source configured to emit laser light; an optical system configured to shape the laser light into a line beam that is long in one direction, and project the line beam; a scanner configured to perform scanning with the line beam in a short side direction of the line beam; and a configuration for causing light intensity of the line beam to be different in a long side direction of the line beam. The light intensity of the line beam is caused to be different, for example, by a controller controlling emission power of a plurality of light emitting portions disposed in the light source along a direction corresponding to the long side direction of the line beam.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: April 11, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hitoshi Noguchi, Eiji Takeda
  • Patent number: 11624803
    Abstract: A system includes first, second, and third microphones configured to receive sound waves from a source of the sound waves. The system includes a memory configured to store first, second, and third phase difference maps for the first and second microphones, the second and third microphones, and the third and first microphones. The system includes a processor configured to measure first, second, and third phase differences between the sound waves received from the source by the first and second microphones, the second and third microphones, and the third and first microphones; receive the first, second, and third phase difference maps from the memory; and identify a location of the source of the sound waves based on the first, second, and third phase differences and the first, second, and third phase difference maps for the first and second microphones, the second and third microphones, and the third and first microphones.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: April 11, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Hejie Lin, Xu Han, Jing Li
  • Patent number: 11624824
    Abstract: An optoelectronic sensor (10) for detecting objects in a monitoring region (20), the sensor (10) having a scanning unit (12, 58) movable about an axis of rotation (18), a plurality of scanning modules (22) for periodically scanning the monitoring region (20) and for generating corresponding received signals, and an evaluation unit (48) for obtaining information about the objects from the received signals, the scanning modules (22) comprising at least one light transmitter (24) for transmitting several light beams (28) separated from one another and at least one light receiver (36) for generating the received signals from the light beams (32) remitted by the objects, wherein at least one scanning module (22) is at least one of tilted by a tilt angle (?) relative to its main viewing direction and rotated by a rotation angle (?).
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: April 11, 2023
    Assignee: SICK AG
    Inventors: Hartmut Gimpel, Gottfried Hug, Klaus Clemens
  • Patent number: 11619740
    Abstract: A lidar receiver that includes a photodetector circuit can be controlled so that the detection intervals used by the lidar receiver to detect returns from fired laser pulse shots are closely controlled. Such control over the detection intervals used by the lidar receiver allows for close coordination between a lidar transmitter and the lidar receiver where the lidar receiver is able to adapt to variable shot intervals of the lidar transmitter (including periods of high rate firing as well as periods of low rate firing). The detection intervals can vary across different shots, and at least some of the detection intervals can be controlled to be of different durations than the shot intervals that correspond to such detection intervals.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: April 4, 2023
    Assignee: AEYE, Inc.
    Inventors: Naveen Reddy, Allan Steinhardt, Luis Dussan, Joel Benscoter, Alex Liang, Philippe Feru, Igor Polishchuk
  • Patent number: 11619716
    Abstract: A device may include an input optical path, a first optical path, a plurality of second optical paths, a first optical amplifier, a plurality of second optical amplifiers, and a control circuit. The input optical path may receive, at one end thereof, a beam from a laser source. The first optical path and the second optical paths may be respectively branched from at the other end of the input optical path. The first optical amplifier may be coupled to the first optical path. The second optical amplifiers may be respectively coupled to the second optical paths. The control circuit may selectively turn on one of the second optical amplifiers to output a modulated optical signal of the beam. The control circuit may turn on the first optical amplifier, in synchronization with turning on any one of the second optical amplifiers, to output a local oscillator (LO) signal.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: April 4, 2023
    Assignee: AURORA OPERATIONS, INC.
    Inventors: Zeb Barber, Randy Ray Reibel, Sean Spillane
  • Patent number: 11619712
    Abstract: A hybrid LiDAR-imaging device is configured for aerial surveying and comprises a camera arrangement adapted for generating orthophoto data and a LiDAR device, in which an overall exposure area is provided by the camera arrangement, which has a transverse extension of at least 60 mm and the LiDAR device has a longitudinal extension axially along a ground viewing nominal LiDAR axis and a lateral extension substantially orthogonal to the nominal LiDAR axis, in which the longitudinal extension is larger than the lateral extension.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: April 4, 2023
    Assignee: LEICA GEOSYSTEMS AG
    Inventors: Patrick Steinmann, Werner Kirchhofer
  • Patent number: 11604275
    Abstract: The present invention relates to a laser positioning apparatus and a laser positioning method, the laser positioning apparatus comprises a laser emitting module configured to generate a first laser; a laser direction adjusting module configured to adjust the first laser to a second laser in a first direction when the laser direction adjusting module is located in a first position, and adjust the first laser to a third laser in a second direction perpendicular to the first direction when the laser direction adjusting module is located in a second position; a distance determining module configured to receive the laser reflected or diffused back by the second laser on a surface of a first object to be measured to determine a distance from the laser positioning apparatus to the first object to be measured, or receive the laser reflected or diffused back by the third laser on a surface of a second object to be measured to determine a distance from the laser positioning apparatus to the second object to be measured
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: March 14, 2023
    Assignee: NORTHWEST INSTRUMENT INC.
    Inventors: Xin Shi, Jinmin Zeng, David Xing
  • Patent number: 11604261
    Abstract: A system comprising non-transitory and tangible memory comprising program instructions for performing an extended laser active ranging (ELAR) procedure having a first mode and a second mode. The system includes a processor configured to execute the program instructions to cause the processor to receive selection of a region-of-interest (ROI) having a pixel cluster; and cause laser ranging using a laser ranging system in the first mode. The process is configured to determine whether a laser ranging reflection (LRR) signal is received by a laser photodetector of a gimbal during the first mode. If the LRR signal is not received, the processor performs the second mode of the ELAR procedure initialized to a center of the selected ROI to search for a reflective surface in the ROI of an imaged real-world view of an ambient scene and registered to the pixel cluster to find a small target.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: March 14, 2023
    Assignee: LOCKEED MARTIN CORPORATION
    Inventor: Andrew M. Downing
  • Patent number: 11579260
    Abstract: A system for an aircraft includes an optical sensor, at least one aircraft sensor, and a controller. The optical sensor is configured to emit a laser outside the aircraft, and the at least one aircraft sensor is configured to sense at least one aircraft condition. The controller is configured to determine a first operational state of the aircraft based upon the at least one aircraft condition and determine a second operational state of the aircraft based on the at least one aircraft condition, and operate the optical sensor to emit the laser at a first intensity during the first operational state and a second intensity during the second operational state, wherein the second intensity is greater than the first intensity.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: February 14, 2023
    Assignee: Rosemount Aerospace Inc.
    Inventors: Jaime Sly, Mark Sherwood Miller
  • Patent number: 11567227
    Abstract: The present invention provides a multi-mode dispersion energy imaging device and method for a four-component marine interface wave of an ocean bottom seismometer, belonging to the technical field of marine seismic exploration. The method includes the following steps: designing an marine interface wave artificial seismic observation system, designing a reasonable observation system according to the geological condition of the operation area to ensure the resolution of the imaging to perform the marine artificial source seismic operation carrying out the data preprocessing of the seafloor surface wave, and then carrying out the three-component seismometer Scholte wave and the acoustic guided wave dispersion energy imaging, and the one-component hydrophone acoustic guided wave dispersion energy imaging; superposing and normalizing the three-component Scholte wave dispersion energy spectrum and the one-component acoustic guided wave dispersion energy spectrum. The device is implemented based on the method above.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: January 31, 2023
    Assignee: INSTITUTE OF GEOLOGY AND GEOPHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Yuan Wang, Qingyu You, Tianyao Hao, Yaoxing Hu, Chunlei Zhao, Yan Zhang, Xiqiang Xu
  • Patent number: 11567172
    Abstract: A method is described for the in particular optical capture of at least one object (18, 20) with at least one sensor apparatus (14) of a vehicle (10), a device (34) of a sensor apparatus (14), a sensor apparatus (14) and a driver assistance system (12) with at least one sensor apparatus (14). In the method, in particular optical transmitted signals (36) are transmitted into a monitoring region (16) with the at least one sensor apparatus (14) and transmitted signals (36) reflected from object points (40) of the at least one object (18, 20) are captured as received signals (38) with angular resolution with reference to a main monitoring direction (42) of the at least one sensor apparatus (14). A spatial distribution of the object points (40) of the at least one object (18, 20) relative to the at least one sensor apparatus (14) is determined from a relationship between the transmitted signals (36) and the received signals (38), and the at least one object (18, 20) is categorized as stationary or non-stationary.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: January 31, 2023
    Assignee: Valeo Schalter und Sensoren GmbH
    Inventor: Philipp Blob