Patents Examined by Zachary John Baum
-
Patent number: 12054807Abstract: A method for refining lithium from a crude brine includes charging a crude brine into a feeder tank held at a temperature T1 and containing a sufficient carbonate source to precipitate all carbonate-forming solids in the crude brine to form a precipitate mixture and a crystal free supernatant; pumping the crystal free supernatant from the feeder tank to a first crystallization reactor that is held at a temperature T2 to crystallize a lithium carbonate salt out of the crystal free supernatant; wherein the temperature T1 is lower than the temperature T2; and controlling a flow rate to maintain a steady state concentration of the lithium carbonate salt in the solution phase of the crystallization reactor.Type: GrantFiled: December 8, 2020Date of Patent: August 6, 2024Assignee: THE UNIVERSITY OF BRITISH COLUMBIAInventors: Jason Ellis Hein, Johannes Pierre Kennepohl
-
Patent number: 12054396Abstract: A method of decolorizing diamonds includes placing a diamond in an opaque container with a UV-C light source, and sealing the opaque container so that it is substantially airtight. The method also includes powering on the UV-C light source to expose the diamond to the UV-C light for a pre-determined amount of time for the exposure, powering off the UV-C light source, and venting the opaque container to release generated ozone. In addition, the method includes repeating powering on and off the UV-C light source until an improved color of the diamond is achieved.Type: GrantFiled: June 2, 2021Date of Patent: August 6, 2024Inventor: John Ryder
-
Patent number: 12054398Abstract: Copper ion-doped carbon dots (Cu-CDs) and a preparation method thereof are disclosed. The preparation method includes the following steps: using copper nitrate as a dopant to generate a complex of polyacrylic acid and copper ions as a precursor by an in situ polymerization; standing overnight, and performing repeated suction filtration to collect filter residues; then, performing pyrolysis and carbonization to generate carbonized products, dispersing in ultrapure water, taking a supernatant, and then performing extraction and purification to obtain the CDs. When the Cu-CDs prepared by the present invention are used in photodynamic therapy, photothermal/photodynamic synergistic therapy is not required, and the Cu-CDs are suitable for the therapeutic process of skin cancer, lung cancer, pancreatic cancer, esophageal cancer, brain glioma, as well as some skin diseases and ophthalmological diseases.Type: GrantFiled: March 15, 2019Date of Patent: August 6, 2024Assignee: ANHUI UNIVERSITYInventors: Hong Bi, Mingsheng Xu, Jingmin Wang, Antonio Claudio Tedesco
-
Patent number: 12054805Abstract: Methods for recovering a metal from a metal-containing material are provided. In embodiments, such a method comprises exposing a metal-containing material to a leaching solution comprising a solvent and a binoxalate, a tetraoxalate, or a combination thereof, under conditions to provide a leachate comprising a soluble metal oxalate; inducing precipitation of a metal-containing precipitate comprising the metal of the soluble metal oxalate from the leachate; and recovering the metal-containing precipitate.Type: GrantFiled: April 28, 2021Date of Patent: August 6, 2024Assignee: University of KansasInventors: Mark Brandon Shiflett, David Richard Corbin, Ankit Verma
-
Patent number: 12043544Abstract: A flexible boron nitride nanoribbon aerogel has an interconnected three-dimensional porous network structure which is formed by mutually twining and contacting boron nitride nanoribbons and consists of macropores having a pore diameter of more than 50 nm, mesopores having a pore diameter of 2-50 nm and micropores having a pore diameter of less than 2 nm. The preparation method of the flexible boron nitride nanoribbon aerogel includes the following steps: performing high-temperature dissolution on boric acid and a nitrogen-containing precursor to form a transparent precursor solution, preparing the transparent precursor solution into precursor hydrogel, subsequently drying and performing high-temperature pyrolysis to obtain the flexible boron nitride nanoribbon aerogel. The boron nitride nanoribbon aerogel has excellent flexibility and resilience and can withstand different forms of loads from the outside within a wide temperature range.Type: GrantFiled: January 2, 2020Date of Patent: July 23, 2024Assignee: SUZHOU INSTITUTE OF NANO-TECH AND NANO-BIONICS (SINANO), CHINESE ACADEMY OF SCIENCESInventors: Xuetong Zhang, Guangyong Li
-
Patent number: 12040463Abstract: A battery recycling process recovers lithium from nickel-rich cathode material in a recycling stream of end-of-life batteries. A dilute acid leach of a high nickel content cathode material contains a mixture of sulfuric acid based on a molar quantity of lithium in the cathode material. The highly selective leach generates a lithium rich solution with a small amount of nickel removable by nanofiltration to achieve a highly efficient recovery of the lithium contained in the recycling stream. A quantity of the leach acid based on the lithium content and a quantity of water based on a total black mass of the recycling stream results in a highly selective, near pure lithium leach when the recycling stream results from high nickel NMC batteries such as 811.Type: GrantFiled: October 12, 2022Date of Patent: July 16, 2024Assignee: Ascend Elements, Inc.Inventors: Kee-Chan Kim, Eric Gratz
-
Patent number: 12017927Abstract: The present invention relates to a method for preparing nickel sulfate using low-nickel ferronickel is disclosed. The method comprises the following steps: (1) grinding ferronickel to obtain ferronickel powder, and then sintering the ferronickel powder with an oxidant to prepare ferronickel oxide powder; (2) adding sulfuric acid to the ferronickel oxide powder prepared in step (1), mixing, heating, and washing with water to prepare a sulfate salt water washing solution; (3) adding a base to the sulfate salt water washing solution prepared in step (2) to adjust the pH value, then adding a fluoride salt to form a precipitate, filtering to remove the precipitate, and drying the filtrate to obtain nickel sulfate. The method provided in the present invention can improve the efficiency of preparing nickel sulfate, reduce the loss of nickel, and prepare nickel sulfate with high purity, the content of Ni potentially reaching 19.73%-21.34%.Type: GrantFiled: May 27, 2022Date of Patent: June 25, 2024Assignees: GUANGDONG BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP RECYCLING TECHNOLOGY CO., LTD., HUNAN BRUNP EV RECYCLING CO., LTD.Inventors: Haijun Yu, Yingsheng Zhong, Yinghao Xie, Aixia Li, Xuemei Zhang, Changdong Li
-
Patent number: 12006230Abstract: Described herein is a process for making a nickel composite hydroxide with a mean particle diameter d50 in the range from 3 to 20 ?m including combining (a) an aqueous solution of water-soluble salts of nickel and of at least one of cobalt and manganese, and, optionally, at least one of Al, Mg, B, or transition metals other than nickel, cobalt, and manganese, (b) an aqueous solution of an alkali metal hydroxide and (c) an aqueous solution of alkali metal (bi)carbonate or ammonium (bi)carbonate in the molar ratio of 0.001:1 to 0.04:1, and, optionally, (d) an aqueous solution of alkali metal aluminate, in a continuous stirred tank reactor or in a cascade of at least two continuous stirred tank reactors.Type: GrantFiled: October 30, 2019Date of Patent: June 11, 2024Assignee: BASF SEInventors: Thorsten Beierling, Daniela Pfister
-
Patent number: 12006227Abstract: Disclosed are a nickel-iron wet treatment method and an application thereof. The treatment method comprises: in a high-pressure oxygen environment, mixing a crushed nickel-iron material, sulphuric acid and a corrosion aid, performing an acid leaching reaction, then performing solid-liquid separation on slurry subjected to acid leaching, adding an oxidant into the obtained filtrate, performing heating, removing the corrosion aid, adding a precipitating agent into the filtrate, controlling the pH value of the filtrate, and performing solid-liquid separation to obtain a ferric hydroxide precipitate and a nickel-containing filtrate; and performing extraction and back extraction on the nickel-containing filtrate to prepare battery-grade nickel sulphate.Type: GrantFiled: June 6, 2022Date of Patent: June 11, 2024Assignees: Guangdong Brunp Recycling Technology Co., Ltd., Hunan Brunp Recycling Technology Co., Ltd., Hunan Brunp Ev Recycling Co., Ltd.Inventors: Haijun Yu, Yinghao Xie, Aixia Li, Xuemei Zhang, Changdong Li
-
Patent number: 12000013Abstract: The disclosure relates to processes for extracting lithium from an uncalcined lithium-bearing silicate and recovering a lithium salt therefrom. A slurry of the uncalcined lithium-bearing silicate and a caustic solution is heated in an autoclave to provide a Li-rich sodalite phase. The Li-rich sodalite phase is leached with a dilute acid to produce a lithium-rich pregnant liquor. Various subsequent processes to treat the lithium-rich pregnant liquor to recover a lithium salt, such as lithium phosphate, lithium carbonate, lithium sulphate or lithium hydroxide, are described.Type: GrantFiled: July 24, 2019Date of Patent: June 4, 2024Assignees: Australian Nuclear Science And Technology Organisation, Lithium Australia LimitedInventors: Andrew Napier, Christopher Griffith
-
Patent number: 11999616Abstract: A capacitive element and a dielectric thin film having a small dielectric loss and a large relative permittivity, particularly at low frequencies. [Solution] This dielectric thin film includes an A-B—O—N oxynitride. When the A-B—O—N oxynitride is represented by the compositional formula AaBbOoNn, (o+n)/a<3.00 is satisfied.Type: GrantFiled: August 27, 2019Date of Patent: June 4, 2024Assignee: TDK CORPORATIONInventors: Kumiko Yamazaki, Wakiko Sato, Junichi Yamazaki
-
Patent number: 12000015Abstract: This disclosure provides a method of improving gold recovery in a cyanide leaching circuit comprising a gold ore slurry. The method includes the step of providing a gold recovery additive chosen from polyacrylic acid, copolymers of acrylic acid and a sulfonated co-monomer, and combinations thereof, wherein the additive has a weight average molecular weight of from about 500 to about 10,000 g/mol. The method also includes the step of combining the gold recovery additive with the gold ore slurry in the cyanide leaching circuit, wherein the gold recovery additive is present in an amount of from about 10 to about 1000 g per ton of dry gold ore to improve the recovery of gold from the gold ore slurry.Type: GrantFiled: March 30, 2021Date of Patent: June 4, 2024Assignee: Solenis Technologies, L.P.Inventor: Kirill N. Bakeev
-
Patent number: 11987496Abstract: A method for producing a bis(fluorosulfonyl)imide lithium salt is disclosed. The method includes the steps of: (a) reacting bis(chlorosulfonyl)imide with NH4F(HF)n (n=0-10) to prepare ammonium bis(fluorosulfonyl)imide; and (b) reacting the ammonium bis(fluorosulfonyl)imide with a lithium base, wherein in at least one of steps (a) and (b), after the reaction, a process of adding an alkoxy trialkyl silane to the reaction solution to remove a fluorine anion is performed.Type: GrantFiled: September 4, 2019Date of Patent: May 21, 2024Assignee: DAEGU CATHOLIC UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATIONInventors: Sang Ryul Lee, Kyoung Chol Kim, Ja Young Park, Ji Hyeong Kim, Jeong In Kim, Seok Ju Lee, Jongyun Jang, Seongjeong Lee, Mingi Chu, Dong Wook Kang
-
Patent number: 11981580Abstract: A method for producing a halide includes heat-treating a mixed material in an inert gas atmosphere, the mixed material being a mixture of M2O3, NH4X, and LiZ. The M includes at least one element selected from the group consisting of Y, a lanthanoid, and Sc. The X is at least one element selected from the group consisting of CI, Br, I, and F. The Z is at least one element selected from the group consisting of CI, Br, I, and F.Type: GrantFiled: May 16, 2021Date of Patent: May 14, 2024Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventors: Takashi Kubo, Yusuke Nishio, Akihiro Sakai, Akinobu Miyazaki
-
Patent number: 11975979Abstract: A method for growing bulk boron arsenide (BA) crystals, the method comprising utilizing a seeded chemical vapor transport (CVT) growth mechanism to produce single BAs crystals which are used for further CVT growth, wherein a sparsity of nucleation centers is controlled during the further CVT growth. Also disclosed are bulk BAs crystals produced via the method.Type: GrantFiled: June 20, 2019Date of Patent: May 7, 2024Assignee: UNIVERSITY OF HOUSTON SYSTEMInventors: Zhifeng Ren, Fei Tian, Gang Chen, Bai Song, Ke Chen, Li Shi, Xi Chen, Sean Sullivan, David Broido, Navaneetha Krishnan Ravichandran
-
Patent number: 11965226Abstract: The present invention relates to a lithium metal powder, a preparing method thereof, and an electrode including the same, wherein the method for preparing the lithium metal powder includes: providing a lithium metal material and a ultrasonication solution; mixing the lithium metal material and the ultrasonication solution to form a mixed solution; and ultrasonically vibrating the mixed solution to form a lithium metal powder, wherein the lithium metal powder is covered by a protective layer, and the aforementioned protective layer includes a protective layer material, wherein the protective layer material includes a sulfide, fluoride, or nitride, or a combination thereof.Type: GrantFiled: October 17, 2022Date of Patent: April 23, 2024Assignee: NATIONAL YANG MING CHIAO TUNG UNIVERSITYInventors: Jeng-Kuei Chang, Si-Hao Chen
-
Patent number: 11957996Abstract: Disclosed is a microwave chemical method for totally extracting fluorine and rare earth from bastnaesite concentrate, including: alkaline conversion defluorination of bastnaesite through microwave irradiation, microwave-assisted leaching of fluorine, solid-liquid separation of leaching solution and microwave-assisted leaching of rare earth. The rare earth hydrochloric acid solution for leaching contains no fluorine ion, so that the fluorine interference of subsequent processes such as impurity removal can be completely avoided; the fluorine and the rare earth are leached with microwaves, which does not need the stirring, so that the automatic control is easy to implement; the fluorine and rare earth leaching speed is high, the leaching time is short and the complete leaching of fluorine and little residual alkali in the slag can be realized by two-time leaching; and no fluorine-containing waste water is discharged, and the total extraction of the rare earth can be realized by one-time leaching.Type: GrantFiled: April 26, 2021Date of Patent: April 16, 2024Assignee: Sichuan Normal UniversityInventors: Shilin Zhao, Hongcheng Zhang, Jun Ma, Yang Liao, Liyang Han, Meng Jiang, Hao Huang, Chaoqun Li, Xiaoting Li, Hongyan Shang
-
Patent number: 11952642Abstract: The present invention belongs to the field of recovery of secondary resources of noble metals, and discloses a method for leaching platinum group metals from spent catalyst by UV-vis, which uses ferric oxalate complex/hydrogen peroxide-chloride salt solution as a solvent for extracting platinum group metals under the condition of UV-vis, converts the platinum group metals from metallic state to platinum group metal complex, and obtains platinum group metal lixivium to realize the leaching of the platinum group metals. The platinum leaching rate of the method of the present invention can reach more than 97%. The present invention has mild reaction conditions, realizes the green recovery of platinum group metals from spent catalyst, avoids the use of strong acids and bases and toxic substances and avoids the production of toxic gases in the leaching process, so as to reduce the environmental hazards of the spent catalyst.Type: GrantFiled: November 17, 2023Date of Patent: April 9, 2024Assignee: DALIAN UNIVERSITY OF TECHNOLOGYInventors: Zhenping Qu, Xinna Zhao, Hui Wang
-
Patent number: 11939229Abstract: The present invention provides a method for treating a copper-containing waste etching solution, which includes: preparing basic copper chloride nanometer seed crystals and synthesizing basic copper chloride mono-crystals; making an acidic waste etching solution subjected to agglomeration reaction with an ammonium-containing solution and slurry containing the basic copper chloride mono-crystals to obtain basic copper chloride crystal particles and copper-removed waste solution; making an alkaline waste etching solution react with sulfuric acid to obtain a copper sulfate mixed solution; and then evaporating, concentrating, cooling and crystallizing the copper sulfate mixed solution obtained by the reaction of the alkaline waste etching solution and the sulfuric acid in sequence to obtain copper sulfate pentahydrate solids.Type: GrantFiled: November 18, 2022Date of Patent: March 26, 2024Assignee: Central South UniversityInventors: Zhang Lin, Xu Yan, Xueming Liu, Fandongkun Meng, Yanjie Liang
-
Patent number: 11932551Abstract: Salt production can include preparing hydrohalite particles by crystallization from saturated brine, adding the hydrohalite particles to a salt brine, thereby forming a hydrohalite-salt brine mixture, agitating the hydrohalite-salt brine mixture until the hydrohalite particles have decomposed into NaCl crystals, and filtering out the NaCl crystals from the salt brine. In some instances, an initial temperature of the salt brine prior to adding the hydrohalite particles is at least 0° C. In some instances, a ratio of salt brine to hydrohalite particles, by weight, is from 0.4 to 29.Type: GrantFiled: September 30, 2020Date of Patent: March 19, 2024Assignee: MICHIGAN TECHNOLOGICAL UNIVERSITYInventor: Tim Eisele