Patents Examined by Zahed Kabir
  • Patent number: 11123232
    Abstract: An incontinence detection device and system is disclosed.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: September 21, 2021
    Inventors: Glen Haire, Doug Jackson, John Naber
  • Patent number: 11123137
    Abstract: A method for operating a biomedical laser. The method includes providing the biomedical laser having a first range of operational parameters; providing a second range of operational parameters for the biomedical laser; activating the biomedical laser to operate within the second range of operational parameters; identifying a need for a change in operational parameters of the biomedical laser; and triggering an action based on the identified need. The action includes providing a third range of operational parameters for the biomedical laser and activating the biomedical laser to operate within the third range of operational parameters; and de-activating a range of operational parameters. The second and third range of operational parameters is within the first range of operational parameters.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: September 21, 2021
    Assignee: Modulight Oy
    Inventors: Petteri Uusimaa, Seppo Orsila
  • Patent number: 11116663
    Abstract: An ophthalmic illumination method and system with a head-up display imaging system is provided wherein a therapeutic light is generated by a first laser light source configured to generate therapeutic light and a near-infrared wavelength of an alignment pattern is generated by a second laser light source, where the therapeutic light is directed upon an eye to be examined or treated in accordance with the alignment pattern.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: September 14, 2021
    Assignee: IRIDEX Corporation
    Inventor: Chris Sramek
  • Patent number: 11110007
    Abstract: In an ophthalmic laser procedure, a lenticule is formed in the cornea and extracted from the cornea to accomplish vision correction. The ophthalmic laser system is used to form top and bottom lenticule incisions which intersect each other to form an isolated volume of corneal tissue in between. The volume of tissue includes a lenticular portion having a circular or oval shape and a side tab that protrudes from the peripheral of the lenticular portion. The side tab has a radial dimension between 0.5 and 5 mm and a width between 0.5 and 3 mm in. An entry cut is further formed from the anterior corneal surface to the top or bottom lenticule incisions to provide access to the lenticule. During extraction, the surgeon uses the surgical tool to grab the side tab to extract the lenticule.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: September 7, 2021
    Assignee: AMO Development, LLC
    Inventors: Jose L. Garcia, Griffith E. Altmann
  • Patent number: 11096721
    Abstract: This disclosure relates to methods and systems to assist in surgery of a joint. The system determines a mechanical property of one or more ligaments associated with the joint based on measurement data indicative of a movement of the bones relative to each other under multiple mechanical loads. The system then determines a predicted characteristic of the joint after the surgery based on a spatial parameter of the surgery and based on the mechanical property of the one or more ligaments and generates an output signal indicative of the predicted characteristic to assist the surgery. Since the predicted characteristic of the joint is determined based on the mechanical property of the ligaments, the prediction is more accurate than other methods that rely on only bone geometries to predict a surgery outcome.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: August 24, 2021
    Assignee: 360 Knee Systems Pty Ltd.
    Inventors: Willy Theodore, Joshua Twiggs, Brad Miles, Bede O'Connor
  • Patent number: 11096590
    Abstract: The invention provides a body-worn patch sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The patch sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: August 24, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna, Mark Dhillon
  • Patent number: 11076809
    Abstract: A static charge filter (522) removes static charge in a cardiac electrical signal. The static charge filter includes a first amplifier (608) configured to amplify an input signal, which includes the cardiac electrical signal and static charge from an electrode, which is in a path of an X-ray beam. The static charge filter further includes a limiter (614) configured to limit a maximum voltage of the signal based on a predetermined clamping threshold, producing a voltage clamped signal. The static charge filter further includes a filter (616) configured to filter high frequency components of the voltage clamped signal, producing a filtered signal. The static charge filter further includes a second amplifier (620) configured to scale an amplitude of the filtered signal so that cardiac electrical signal in an output signal has a same voltage level as a voltage level of the cardiac electrical signal in the input signal.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: August 3, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Marc Anthony Chappo, David Dennis Salk
  • Patent number: 11071871
    Abstract: An intracardiac system has an intracardiac pacemaker and a cover. The cover at least partially surrounds the pacemaker. An inner surface of the cover, which faces the pacemaker, includes an inner layer with bioresorbable material. There are also described methods for implanting and explanting an intracardiac pacemaker.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: July 27, 2021
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Thomas Doerr, Dirk Muessig
  • Patent number: 11064918
    Abstract: The invention provides a body-worn patch sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The patch sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: July 20, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna
  • Patent number: 11058340
    Abstract: The invention provides a neck-worn sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The neck-worn sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: July 13, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna, Mark Dhillon
  • Patent number: 11045373
    Abstract: A portable, personal therapy chamber for provision of infrared radiation therapy. The therapy chamber includes a pair of telescopically positionable cabins that are lightweight and easily portable by a single user. The therapy chamber is configured for use by a single person lying generally prone on a surface. The cabins are disposed to overlie the user and include a plurality of infrared radiation elements that direct infrared energy toward the user's body. When using the therapy chamber, the user's head extends from an open end of the cabin. A facial treatment fixture is integrated with the cabin to be extendable longitudinally from a terminal end thereof and to overlie the user's face/head. The therapy chamber can be configured to provide mild hyperbaric oxygen therapy in addition to infrared therapy.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: June 29, 2021
    Assignee: Sunlighten, Inc.
    Inventor: Aaron Michael Zack
  • Patent number: 11045094
    Abstract: The invention provides a neck-worn sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The neck-worn sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: June 29, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna
  • Patent number: 11039956
    Abstract: An ophthalmological laser therapy device including a laser system, an x-y scanner, collecting optics and a z-scanner. The invention also relates to a method for processing a tissue of an eye by a therapeutic laser beam of an ophthalmological laser therapy device. The invention provides an ophthalmological laser therapy device and a corresponding method which permit, with minimal engineering complexity, a very quick positioning of the laser spot in a large volume region, in particular in a large x-y region perpendicular to the optical axis. The problem is also solved by a method for processing a tissue of the eye or a material located in an eye using an ophthalmological laser therapy device, wherein each sub-section of the tissue of the eye is processed using a corresponding positioning or the device for the adjustable redirecting of the laser beam in an image field of the collection optics.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: June 22, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Beate Böhme, Marco Hanft, Thomas Nobis
  • Patent number: 11039751
    Abstract: The invention provides a neck-worn sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The neck-worn sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: June 22, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna, Mark Dhillon
  • Patent number: 11026587
    Abstract: The invention provides a neck-worn sensor for simultaneously measuring a blood pressure (BP), pulse oximetry (SpO2), and other vital signs and hemodynamic parameters from a patient. The neck-worn sensor features a sensing portion having a flexible housing that is worn entirely on the patient's chest and encloses a battery, wireless transmitter, and all the sensor's sensing and electronic components. It measures electrocardiogram (ECG), impedance plethysmogram (IPG), photoplethysmogram (PPG), and phonocardiogram (PCG) waveforms, and collectively processes these to determine the vital signs and hemodynamic parameters. The sensor that measures PPG waveforms also includes a heating element to increase perfusion of tissue on the chest.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: June 8, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Erik Tang, Matthew Banet, Marshal Dhillon, James McCanna, Mark Dhillon
  • Patent number: 11026666
    Abstract: An articulated tool positioning apparatus comprising a base member, an intermediate member, an end member and a first tool holder arranged in succession, each of the base member, intermediate member, end member and tool holder having a respective central opening. A first plurality of coupled guides id positioned between the base member and the intermediate member and a second plurality of coupled guides is positioned between the intermediate member and the end member. A third plurality of coupled guides is diposed between the end member and the tool holder. The base member, intermediate member, end member, first tool holder and first second and third pluralities of coupled guides all have a central opening and guide openings or securing points for securing pluralities of flexible control links to the base member or to an object separated from the base member.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: June 8, 2021
    Assignee: Titan Medical Inc.
    Inventors: Rene Robert, David Allen Zitnick, Peter John Kenneth Cameron, Leonard M. Faria, Andrea Bajo
  • Patent number: 11020605
    Abstract: Methods are disclosed for reduction of muscle fatigue, enhancement of wound healing and tissue repair and/or reduction of pain. The methods comprise irradiating a muscle or an injured tissue of a subject, as applicable, with pulsed blue and/or red light having an average irradiance that ranges from 0.1 mW/cm2 to 20 mW/cm2 at a radiant exposure that ranges from 0.5 J/cm2 to 60 J/cm2. The pulsed blue and/or red light is preferably applied with a flexible light source that includes a flexible light emitter positioned between a flexible anode and a flexible cathode. The flexible light emitter may comprise a printed LED film or OLEDs that emit blue and/or red light, or a printed LED film or OLEDs that emit blue light in combination with a quantum dot film that converts a portion of the blue light emission into red light.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: June 1, 2021
    Assignee: CAREWEAR CORP.
    Inventor: John C. Castel
  • Patent number: 11006889
    Abstract: We report a method for optimizing the therapeutic efficacy of evoked responses elicited by one or more electrical impulses delivered to a neural structure, comprising: comparing a test evoked response to an evoked response elicited by therapeutically efficacious electrical stimulation; adjusting at least one parameter of the electrical impulses in response to a determination that said test evoked response is not similar to the therapeutic evoked response; determining that the test evoked response resembles the therapeutic evoked response after performing at least one of said adjustments; and saving to memory at least one adjusted parameter that increased the similarity between the test evoked response and the therapeutic evoked response. We also report a medical device system configured to implement the method. We also report a non-transitory computer readable program storage unit encoded with instructions that, when executed by a computer, perform the method.
    Type: Grant
    Filed: January 7, 2018
    Date of Patent: May 18, 2021
    Assignee: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Patent number: 11006884
    Abstract: This specification describes a method of visually displaying electrocardiogram data in a compressed manner on the display screen wherein rhythmic information is visible and a method of categorizing zones of the electrocardiogram data.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: May 18, 2021
    Assignee: ICENTIA INC.
    Inventors: Pierre Fecteau, Germain Éthier
  • Patent number: 10994136
    Abstract: This document discusses, among other things, systems and methods for providing pain relief to a patient. Recording circuitry may receive electrical signals corresponding to evoked compound action potentials in the patient that may be produced in response to external stimulation of a location where the patient is experiencing pain. The received electrical signals may be stored in a memory. Internal stimulation may then be applied to the patient and control circuitry may receive electrical signals corresponding to evoked compound action potentials in the patient that may be produced in response to the internal stimulation. The control circuitry may then adjust electrical parameters of the internal stimulation, such as to reduce a difference between the electrical signals corresponding to evoked compound action potentials produced in response to the internal stimulation and electrical signals corresponding to evoked compound action potentials produced in response to the external stimulation.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: May 4, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Natalie A. Brill, Rosana Esteller