Patents by Inventor Aaron Michael Dziech

Aaron Michael Dziech has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240011417
    Abstract: A pericritical fluid system for a thermal management system associated with a turbine engine may include one or more sensors configured to generate sensor outputs corresponding to one or more phase properties of a pericritical fluid flowing through a cooling circuit of the thermal management system, and a controller configured to generate control commands configured to control one or more controllable components of the thermal management system based at least in part on the sensor outputs. The one or more sensors may include one or more phase detection sensors, such as an acoustic sensor.
    Type: Application
    Filed: September 6, 2023
    Publication date: January 11, 2024
    Inventors: Arthur William Sibbach, Aaron Michael Dziech, Scott Alan Schimmels, Robert R. Rachedi, Jeffrey Douglas Rambo, Brandon Wayne Miller
  • Patent number: 11796176
    Abstract: A combustor assembly for a gas turbine engine defining a radial direction and a circumferential direction includes a liner assembly at least partially defining a combustion chamber and including at least one liner extending between a downstream end and an upstream end, the downstream end of the at least one liner defining a radial opening and an interface surface extending along the circumferential direction and along the radial direction; and a seal member including a body, a flange, and a radial element, the body defining a body surface extending along the radial direction and positioned adjacent the interface surface of the at least one liner, the flange extending forward from the body, and the radial element coupled to the flange and extending into the radial opening defined by the at least one liner.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: October 24, 2023
    Assignee: General Electric Company
    Inventors: Ernesto Andres Vallejo Ruiz, Aaron Michael Dziech, Jonathon Eli Farmer
  • Patent number: 11391171
    Abstract: Flow path assemblies having features for positioning the assemblies within a gas turbine engine are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes an integral combustion portion and turbine portion, the combustor portion extending through a combustion section of the gas turbine engine and the turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The flow path assembly further comprises at least two positioning members for radially centering the flow path assembly within the gas turbine engine. The positioning members extend to the flow path assembly from one or more structures external to the flow path assembly, constrain the flow path assembly tangentially, and allow radial and axial movement of the flow path assembly. Other embodiments for positioning flow path assemblies also are provided.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: July 19, 2022
    Assignee: General Electric Company
    Inventors: Brandon ALlanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher, Aaron Michael Dziech, Brett Joseph Geiser
  • Publication number: 20220113030
    Abstract: A combustor assembly for a gas turbine engine defining a radial direction and a circumferential direction includes a liner assembly at least partially defining a combustion chamber and including at least one liner extending between a downstream end and an upstream end, the downstream end of the at least one liner defining a radial opening and an interface surface extending along the circumferential direction and along the radial direction; and a seal member including a body, a flange, and a radial element, the body defining a body surface extending along the radial direction and positioned adjacent the interface surface of the at least one liner, the flange extending forward from the body, and the radial element coupled to the flange and extending into the radial opening defined by the at least one liner.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Ernesto Andres Vallejo Ruiz, Aaron Michael Dziech, Jonathon Eli Farmer
  • Patent number: 11285711
    Abstract: Methods for adhering a substrate onto a surface of a ceramic component are provided. The method may include applying a first bond coating onto an attachment surface of the substrate, applying a first alumina coating onto the first bond coating on the attachment surface of the substrate, applying a second bond coating onto an outer surface of the ceramic component, applying a second alumina coating onto the second bond coating on the attachment surface of the substrate, applying a cement onto at least one of the first alumina coating and the second alumina coating, and adhering the attachment surface of the substrate onto the outer surface of the ceramic component. Connections between a metal substrate and a ceramic matrix composite component are also provided.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: March 29, 2022
    Assignee: General Electric Company
    Inventors: Daniel James Aug, Joshua Daniel Brown, Aaron Michael Dziech, Joseph Herbert Fields, Kenneth Michael Gessner
  • Publication number: 20220088912
    Abstract: Methods for adhering a substrate onto a surface of a ceramic component are provided. The method may include applying a first bond coating onto an attachment surface of the substrate, applying a first alumina coating onto the first bond coating on the attachment surface of the substrate, applying a second bond coating onto an outer surface of the ceramic component, applying a second alumina coating onto the second bond coating on the attachment surface of the substrate, applying a cement onto at least one of the first alumina coating and the second alumina coating, and adhering the attachment surface of the substrate onto the outer surface of the ceramic component. Connections between a metal substrate and a ceramic matrix composite component are also provided.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 24, 2022
    Inventors: Daniel James Aug, Joshua Daniel Brown, Aaron Michael Dziech, Joseph Herbert Fields, Kenneth Michael Gessner
  • Patent number: 11268697
    Abstract: Combustor assemblies for gas turbine engines are provided. For example, a combustor assembly comprises a combustor dome, a first heat shield having an edge, a second heat shield having an edge, and a seal extending from the edge of the first heat shield to the edge of the second heat shield such that the seal spans a gap between the first heat shield and the second heat shield. In another embodiment, the seal has a first contact portion contacting the edge of the first heat shield, a second contact portion contacting the edge of the second heat shield edge, and a connecting portion connecting the first portion and the second portion. The first contact portion and the second contact portion project away from the connecting portion. Methods for sealing between adjacent heat shields of a combustor assembly also are provided.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: March 8, 2022
    Assignee: General Electric Company
    Inventors: Michael Alan Stieg, Valeria Proano Cadena, Aaron Michael Dziech, Michael Todd Radwanski, Donald Michael Corsmeier
  • Patent number: 11255546
    Abstract: Combustor assemblies and methods for assembling combustor assemblies are provided. For example, a combustor assembly comprises an annular inner liner and an annular outer linear, each extending generally along an axial direction. The outer liner includes an outer flange extending forward from its upstream end. The combustor assembly also comprises a combustor dome extending between an inner liner upstream end and the outer liner upstream end and including an inner flange extending forward from a radially outermost end of the combustor dome. The inner liner, outer liner, and combustor dome define a combustion chamber therebetween, and the combustor dome and a portion of the outer liner together define an annular cavity of the combustion chamber. The inner and outer flanges define an airflow opening therebetween, and a chute member is positioned within the airflow opening to define an air chute for providing a flow of air to the annular cavity.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: February 22, 2022
    Assignee: General Electric Company
    Inventors: Aaron Michael Dziech, Megan Elizabeth Scheitlin
  • Patent number: 11209166
    Abstract: A combustor assembly for a gas turbine engine defining a radial direction and a circumferential direction includes a liner assembly at least partially defining a combustion chamber and including at least one liner extending between a downstream end and an upstream end, the downstream end of the at least one liner defining a radial opening and an interface surface extending along the circumferential direction and along the radial direction; and a seal member including a body, a flange, and a radial element, the body defining a body surface extending along the radial direction and positioned adjacent the interface surface of the at least one liner, the flange extending forward from the body, and the radial element coupled to the flange and extending into the radial opening defined by the at least one liner.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: December 28, 2021
    Assignee: General Electric Company
    Inventors: Ernesto Andres Vallejo Ruiz, Aaron Michael Dziech, Jonathon Eli Farmer
  • Publication number: 20200292174
    Abstract: Combustor assemblies and methods for assembling combustor assemblies are provided. For example, a combustor assembly comprises an annular inner liner and an annular outer linear, each extending generally along an axial direction. The outer liner includes an outer flange extending forward from its upstream end. The combustor assembly also comprises a combustor dome extending between an inner liner upstream end and the outer liner upstream end and including an inner flange extending forward from a radially outermost end of the combustor dome. The inner liner, outer liner, and combustor dome define a combustion chamber therebetween, and the combustor dome and a portion of the outer liner together define an annular cavity of the combustion chamber. The inner and outer flanges define an airflow opening therebetween, and a chute member is positioned within the airflow opening to define an air chute for providing a flow of air to the annular cavity.
    Type: Application
    Filed: December 3, 2019
    Publication date: September 17, 2020
    Inventors: Aaron Michael Dziech, Megan Elizabeth Scheitlin
  • Patent number: 10753232
    Abstract: Retention assemblies and retention assembly cooling methods are provided. An exemplary retention assembly comprises an annular baffle, an annular attachment bracket comprising a gas turbine engine component, and first and second cooling passages defined by the baffle and attachment bracket. The first cooling passage is configured to receive a first airflow and the second cooling passage is configured to receive a second airflow. The first airflow has a lower pressure than the second airflow. An exemplary method comprises flowing a first airflow to a first cooling passage defined by a baffle and an attachment bracket of a retention assembly, and flowing a second airflow to a second cooling passage defined by the baffle and the attachment bracket. The second cooling passage is separate from the first cooling passage. The first airflow cools radially outward structures of the retention assembly, and the attachment bracket comprises a CMC component.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: August 25, 2020
    Assignee: General Electric Company
    Inventor: Aaron Michael Dziech
  • Publication number: 20200182075
    Abstract: A combustor assembly for a gas turbine engine defining a radial direction and a circumferential direction includes a liner assembly at least partially defining a combustion chamber and including at least one liner extending between a downstream end and an upstream end, the downstream end of the at least one liner defining a radial opening and an interface surface extending along the circumferential direction and along the radial direction; and a seal member including a body, a flange, and a radial element, the body defining a body surface extending along the radial direction and positioned adjacent the interface surface of the at least one liner, the flange extending forward from the body, and the radial element coupled to the flange and extending into the radial opening defined by the at least one liner.
    Type: Application
    Filed: December 5, 2018
    Publication date: June 11, 2020
    Inventors: Ernesto Andres Vallejo Ruiz, Aaron Michael Dziech, Jonathon Eli Farmer
  • Patent number: 10663167
    Abstract: Combustor assemblies are provided. An exemplary combustor assembly comprises an annular ceramic matrix composite (CMC) inner liner including an inner liner flange, an annular CMC outer liner including an outer liner flange, and an annular CMC combustor dome comprising a plurality of tiles positioned circumferentially adjacent one another. Each tile has a first end radially opposite a second end. The CMC inner liner, outer liner, and combustor dome form a combustor, and the CMC combustor dome is positioned at a combustor forward end. The combustor assembly also comprises a support structure for supporting the combustor and including an annular frame having a frame channel defining a groove and an inner and outer support flanges. The first end of each tile is disposed within the frame channel groove. The inner liner flange is secured to the inner support flange and the outer liner flange is secured to the outer support flange.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: May 26, 2020
    Assignee: General Electric Company
    Inventor: Aaron Michael Dziech
  • Publication number: 20200003418
    Abstract: Combustor assemblies for gas turbine engines are provided. For example, a combustor assembly comprises a combustor dome, a first heat shield having an edge, a second heat shield having an edge, and a seal extending from the edge of the first heat shield to the edge of the second heat shield such that the seal spans a gap between the first heat shield and the second heat shield. In another embodiment, the seal has a first contact portion contacting the edge of the first heat shield, a second contact portion contacting the edge of the second heat shield edge, and a connecting portion connecting the first portion and the second portion. The first contact portion and the second contact portion project away from the connecting portion. Methods for sealing between adjacent heat shields of a combustor assembly also are provided.
    Type: Application
    Filed: August 12, 2019
    Publication date: January 2, 2020
    Inventors: Michael Alan Stieg, Valeria Proano Cadena, Aaron Michael Dziech, Michael Todd Radwanski, Donald Michael Corsmeier
  • Patent number: 10520197
    Abstract: Combustor assemblies and methods for assembling combustor assemblies are provided. For example, a combustor assembly comprises an annular inner liner and an annular outer linear, each extending generally along an axial direction. The outer liner includes an outer flange extending forward from its upstream end. The combustor assembly also comprises a combustor dome extending between an inner liner upstream end and the outer liner upstream end and including an inner flange extending forward from a radially outermost end of the combustor dome. The inner liner, outer liner, and combustor dome define a combustion chamber therebetween, and the combustor dome and a portion of the outer liner together define an annular cavity of the combustion chamber. The inner and outer flanges define an airflow opening therebetween, and a chute member is positioned within the airflow opening to define an air chute for providing a flow of air to the annular cavity.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: December 31, 2019
    Assignee: General Electric Company
    Inventors: Aaron Michael Dziech, Megan Elizabeth Scheitlin
  • Patent number: 10385776
    Abstract: Methods for assembling flow path structures having one or more unitary components are provided. For example, one method for assembling a flow path assembly of a gas turbine engine comprises stacking axially adjacent components within a generally annular outer wall of the flow path assembly. The flow path assembly defines a flow path through a combustion section and at least a portion of a turbine section of the gas turbine engine. The outer wall defines an outer boundary of the flow path, and the axially adjacent components defining at least a portion of an inner boundary of the flow path. The outer wall is a unitary outer wall that includes a combustor portion extending through the combustion section and a turbine portion extending through at least a first turbine stage of the turbine section. The combustor and turbine portions are integrally formed as a single unitary structure.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: August 20, 2019
    Assignee: General Electric Company
    Inventors: Brandon ALlanson Reynolds, Aaron Michael Dziech
  • Patent number: 10385709
    Abstract: Flow path assemblies having features for positioning the assemblies within a gas turbine engine are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes an integral combustion portion and turbine portion, the combustor portion extending through a combustion section of the gas turbine engine and the turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The flow path assembly further comprises at least two positioning members for radially centering the flow path assembly within the gas turbine engine. The positioning members extend to the flow path assembly from one or more structures external to the flow path assembly, constrain the flow path assembly tangentially, and allow radial and axial movement of the flow path assembly. Other embodiments for positioning flow path assemblies also are provided.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: August 20, 2019
    Assignee: General Electric Company
    Inventors: Brandon Allanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher, Aaron Michael Dziech, Brett Joseph Geiser
  • Publication number: 20190249556
    Abstract: Flow path assemblies having features for positioning the assemblies within a gas turbine engine are provided. For example, a flow path assembly comprises an inner wall and a unitary outer wall that includes an integral combustion portion and turbine portion, the combustor portion extending through a combustion section of the gas turbine engine and the turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The flow path assembly further comprises at least two positioning members for radially centering the flow path assembly within the gas turbine engine. The positioning members extend to the flow path assembly from one or more structures external to the flow path assembly, constrain the flow path assembly tangentially, and allow radial and axial movement of the flow path assembly. Other embodiments for positioning flow path assemblies also are provided.
    Type: Application
    Filed: April 23, 2019
    Publication date: August 15, 2019
    Inventors: Brandon ALlanson Reynolds, Jonathan David Baldiga, Darrell Glenn Senile, Daniel Patrick Kerns, Michael Ray Tuertscher, Aaron Michael Dziech, Brett Joseph Geiser
  • Patent number: 10378772
    Abstract: Combustor assemblies for gas turbine engines are provided. For example, a combustor assembly comprises a combustor dome, a first heat shield having an edge, a second heat shield having an edge, and a seal extending from the edge of the first heat shield to the edge of the second heat shield such that the seal spans a gap between the first heat shield and the second heat shield. In another embodiment, the seal has a first contact portion contacting the edge of the first heat shield, a second contact portion contacting the edge of the second heat shield edge, and a connecting portion connecting the first portion and the second portion. The first contact portion and the second contact portion project away from the connecting portion. Methods for sealing between adjacent heat shields of a combustor assembly also are provided.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: August 13, 2019
    Assignee: General Electric Company
    Inventors: Michael Alan Stieg, Valeria Proano Cadena, Aaron Michael Dziech, Michael Todd Radwanski, Donald Michael Corsmeier
  • Patent number: 10371383
    Abstract: Flow path assemblies and gas turbine engines are provided. A flow path assembly may comprise a combustor dome positioned at a forward end of a combustor of a combustion section of a gas turbine engine, and a unitary outer wall including a combustor portion extending through the combustion section and a turbine portion extending through at least a first turbine stage of a turbine section of the gas turbine engine. The combustor portion and the turbine portion are integrally formed as a single unitary structure. The flow path assembly also comprises an inner wall extending from the forward end of the combustor through at least the combustion section. The combustor dome extends radially from the unitary outer wall to the inner wall and is configured to move axially with respect to the inner wall and the unitary outer wall. Other flow path assemblies and gas turbine engine configurations are provided.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: August 6, 2019
    Assignee: General Electric Company
    Inventors: Brandon ALlanson Reynolds, Jonathan David Baldiga, Andrew Scott Bilse, Michael Todd Radwanski, Ernesto Andres Vallejo Ruiz, Aaron Michael Dziech, Mark Eugene Noe