Patents by Inventor Abdalla R. NASSAR

Abdalla R. NASSAR has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940325
    Abstract: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: March 26, 2024
    Assignee: The Penn State Research Foundation
    Inventors: Abdalla R. Nassar, Alexander J. Dunbar, Edward W. Reutzel
  • Publication number: 20230234137
    Abstract: Embodiments relate to in-situ process monitoring of a part being made via additive manufacturing. The process can involve capturing computed tomography (CT) scans of a post-built part. A neural network (NN) can be used during the build of a new part to process multi-modal sensor data. Spatial and temporal registration techniques can be used to align the data to x,y,z coordinates on the build plate. During the build of the part, the multi-modal sensor data can be superimposed on the build plate. Machine learning can be used to train the NN to correlate the sensor data to a defect label or a non-defect label by looking to certain patterns in the sensor data at the x,y,z location to identify a defect in the CT scan at x,y,z. The NN can then be used to predict where defects are or will occur during an actual build of a part.
    Type: Application
    Filed: July 29, 2021
    Publication date: July 27, 2023
    Inventors: Edward Reutzel, Jan Petrich, Abdalla R. Nassar, Shashi Phoha, David J. Corbin, Jacob P. Morgan, Evan P. Diewald, Robert W. Smith, Zackary Keller Snow
  • Publication number: 20230204420
    Abstract: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
    Type: Application
    Filed: July 21, 2022
    Publication date: June 29, 2023
    Inventors: Abdalla R. Nassar, Alexander J. Dunbar, Edward W. Reutzel
  • Publication number: 20230089809
    Abstract: An additive manufacturing system may include a powder delivery device configured to direct a powder stream toward a build surface of a component, and a powder flow monitoring system. The powder delivery device defines a longitudinal axis oriented toward the build surface. The powder flow monitoring system includes an illumination device configured to illuminate at least some powder the powder stream between the powder delivery device and the build surface; and an imaging device configured to image the illuminated powder at an image plane that intersects the longitudinal axis. The illumination device and the imaging device may be registered to the powder delivery device in a plane substantially orthogonal to the longitudinal axis.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 23, 2023
    Inventors: Scott Nelson, Baily Thomas, Abdalla R. Nassar, John Grubbs
  • Publication number: 20230092671
    Abstract: A powder flow monitoring system may include a computing device configured to receive image data representing illuminated powder of a powder stream between a powder delivery device and a build surface of a component, generate a representation of the powder stream based on the image data, and output the representation of the powder stream for display at a display device.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 23, 2023
    Inventors: Scott Nelson, Baily Thomas, Abdalla R. Nassar, Jason Scherer, John Grubbs
  • Patent number: 11571747
    Abstract: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: February 7, 2023
    Assignee: THE PENN STATE RESEARCH FOUNDATION
    Inventors: Abdalla R. Nassar, Alexander J. Dunbar, Edward W. Reutzel
  • Publication number: 20220212256
    Abstract: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
    Type: Application
    Filed: March 21, 2022
    Publication date: July 7, 2022
    Inventors: Abdalla R. Nassar, Alexander J. Dunbar, Edward W. Reutzel
  • Publication number: 20220161364
    Abstract: An additive manufacturing system may include an energy delivery device configured to deliver energy to a component to form a melt pool at least partially surrounded by a cooling region; and an optical system comprising: an imaging device; and an occulting device, wherein the occulting device is configured to occult at least part of thermal emissions produced by the energy and the melt pool and transmit at least some thermal emissions produced by the cooling region.
    Type: Application
    Filed: November 23, 2021
    Publication date: May 26, 2022
    Inventors: Baily Thomas, Scott Nelson, Abdalla R. Nassar, John Grubbs
  • Patent number: 11311943
    Abstract: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: April 26, 2022
    Assignee: The Penn State Research Foundation
    Inventors: Abdalla R. Nassar, Alexander J. Dunbar, Edward W. Reutzel
  • Publication number: 20200061710
    Abstract: Embodiments of the systems can be configured to receive electromagnetic emissions of a substrate (e.g., a build material of a part being made via additive manufacturing) by a detector (e.g., a multi-spectral sensor) and generate a ratio of the electromagnetic emissions to perform spectral analysis with a reduced dependence on location and orientation of a surface of the substrate relative to the multi-spectral sensor. The additive manufacturing process can involve use of a laser to generate a laser beam for fusion of the build material into the part. The system can be configured to set the multi-spectral sensor off-axis with respect to the laser (e.g., an optical path of the multi-spectral sensor is at an angle that is different than the angle of incidence of the laser beam). This can allow the multi-spectral sensor to collect spectral data simultaneously as the laser is used to build the part.
    Type: Application
    Filed: August 14, 2019
    Publication date: February 27, 2020
    Inventors: Abdalla R. Nassar, Alexander J. Dunbar, Edward W. Reutzel
  • Patent number: 10046394
    Abstract: A method for manufacturing material voxel-by-voxel using directed-energy deposition is given. Using the method, unsupported structures, via voxel-wise directed-energy deposition, with steep overhangs is described and demonstrated. Methods for forming arbitrarily-complex structures and shaped voxels and surfaces are also given. A method for forming materials with internally-varying properties is also given. The method utilizes a pulsed or modulated, rather than continuous-wave energy source, thus allowing rapid solidification of voxels, rather than contours, hatches or tracks. Tuning of pulsing or modulation, material flow, and deposition-path parameters allows the buildup of unsupported material using standard directed-energy deposition processing heads and 3-axis stages, for example. The methods are demonstrated using a modified-directed-energy-deposition processes and is applicable to powder-bed for the buildup of three-dimensional components, repair and the addition of features to existing components.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 14, 2018
    Assignee: The Penn State Research Foundation
    Inventors: Abdalla R. Nassar, Edward W. Reutzel
  • Publication number: 20160074937
    Abstract: A method for manufacturing material voxel-by-voxel using directed-energy deposition is given. Using the method, unsupported structures, via voxel-wise directed-energy deposition, with steep overhangs is described and demonstrated. Methods for forming arbitrarily-complex structures and shaped voxels and surfaces are also given. A method for forming materials with internally-varying properties is also given. The method utilizes a pulsed or modulated, rather than continuous-wave energy source, thus allowing rapid solidification of voxels, rather than contours, hatches or tracks. Tuning of pulsing or modulation, material flow, and deposition-path parameters allows the buildup of unsupported material using standard directed-energy deposition processing heads and 3-axis stages, for example. The methods are demonstrated using a modified-directed-energy-deposition processes and is applicable to powder-bed for the buildup of three-dimensional components, repair and the addition of features to existing components.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 17, 2016
    Inventors: Abdalla R. NASSAR, Edward W. REUTZEL