Patents by Inventor Aboelmagd Noureldin

Aboelmagd Noureldin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11598638
    Abstract: The present disclosure relates to methods of enhancing a navigation solution about a device and a platform, wherein the mobility of the device may be constrained or unconstrained within the platform, and wherein the navigation solution is provided even in the absence of normal navigational information updates (such as, for example, GNSS). More specifically, the present method comprises utilizing measurements from sensors (e.g. accelerometers, gyroscopes, magnetometers etc.) within the device to calculate and resolve the attitude of the device and the platform, and the attitude misalignment between the device and the platform.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: March 7, 2023
    Inventors: Jacques Georgy, Zainab Syed, Christopher Goodall, Mohamed Atia, Aboelmagd Noureldin, Naser El-Sheimy
  • Publication number: 20230041831
    Abstract: The present disclosure relates to methods of enhancing a navigation solution about a device and a platform, wherein the mobility of the device may be constrained or unconstrained within the platform, and wherein the navigation solution is provided even in the absence of normal navigational information updates (such as, for example, GNSS). More specifically, the present method comprises utilizing measurements from sensors (e.g. accelerometers, gyroscopes, magnetometers etc.) within the device to calculate and resolve the attitude of the device and the platform, and the attitude misalignment between the device and the platform.
    Type: Application
    Filed: September 29, 2022
    Publication date: February 9, 2023
    Inventors: Jacques Georgy, Zainab Syed, Christopher Goodall, Mohamed Atia, Aboelmagd Noureldin, Naser El-Sheimy
  • Patent number: 10837794
    Abstract: Systems and methods are disclosed for characterizing on foot motion of a user with a portable device by obtaining parameters sufficient to characterize the on foot motion of the user from multiple sensor assemblies. Each additional sensor assembly may be independent of each other. The characterization of on foot motion is provided by synthesizing the parameters from the sensor assemblies. Characterization of on foot motion may include detecting a step, estimating step length, or both.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: November 17, 2020
    Assignee: InvenSense, Inc.
    Inventors: Medhat Omr, Jacques Georgy, Aboelmagd Noureldin
  • Patent number: 10349286
    Abstract: A system and method for providing wireless positioning and an accuracy measure thereof, using a probabilistic approach alone or in combination with other models, is provided, for wireless-network-enabled areas. Further means of ranking “base-stations” in a wireless network area according to position discrimination significance and using this ranking to provide an accuracy measure of positioning is provided. Further means of determining the locations of “base-stations” of a wireless network in unknown area without the need for any absolute reference based positioning system is provided.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: July 9, 2019
    Assignee: InvenSense, Inc.
    Inventors: Mohamed Atia, Aboelmagd Noureldin
  • Patent number: 10337884
    Abstract: A method and apparatus for fast magnetometer calibration with little space coverage is described herein. The present method and apparatus is capable of performing both 2-dimensional (2D) and 3-dimensional (3D) calibration for a magnetometer (magnetic sensor) and calculating calibration parameters. The present method and apparatus does not need the user to be involved in the calibration process and there are no required specific movements that the user should perform. The present method and apparatus performs magnetometer calibration in 2D or 3D depending on the natural device movements whatever the application that the magnetometer is used in.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: July 2, 2019
    Assignee: InvenSense, Inc.
    Inventors: Ahmed Wahdan, Jacques Georgy, Walid Abdelfatah, Aboelmagd Noureldin
  • Patent number: 10302435
    Abstract: The present disclosure relates to a method and system for providing and enhanced navigation solution of a device within a platform (such as for example person, vehicle, or vessel of any type), wherein the device is within the platform and may be strapped or non-strapped to the platform, wherein in case of non-strapped the mobility of the device may be constrained or unconstrained within the platform, wherein the enhancement of the navigation solution is through multiple sensor assemblies, wherein the multiple sensors assemblies are not necessarily all on the device, and wherein the multiple sensors assemblies are within the platform. This method works for a navigation solution utilizing measurements from sensors (such as for example, accelerometers, gyroscopes, magnetometers etc.) whether in the presence or in the absence of absolute navigational information (such as, for example, GNSS or WiFi positioning).
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: May 28, 2019
    Assignee: InvenSense, Inc.
    Inventors: Medhat Omr, Jacques Georgy, Aboelmagd Noureldin
  • Patent number: 10274317
    Abstract: The present disclosure relates to a method and apparatus for determining the misalignment between a device and a platform (such as for example a vessel or vehicle) using radius of rotation of the device, wherein mobility of the device may be constrained or unconstrained within the platform. The device may be moved or tilted to any orientation within the platform and still provide a seamless navigation solution without degrading the performance of this navigation solution. This method can utilize measurements (readings) from sensors (such as for example, accelerometers, gyroscopes, etc.) whether in the presence or in the absence of navigational information updates (such as, for example, Global Navigation Satellite System (GNSS) or WiFi positioning).
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: April 30, 2019
    Assignee: InvenSense, Inc.
    Inventors: Jacques Georgy, Medhat Omr, Aboelmagd Noureldin
  • Patent number: 10267646
    Abstract: The present disclosure relates to a method and system for estimating varying step length for on foot motion (such as for example walking or running). The present method and apparatus is able to be used in anyone or both of two different phases depending on the embodiment. The first phase is a model-building phase done offline to obtain the nonlinear model for the step length as a function of different parameters that represent human motion dynamics, the model is built using a nonlinear system identification technique. In the second phase the nonlinear model is used to calculate the step length from the different parameters that represent human motion dynamics used as input to the model. These parameters are obtained from sensors readings from the sensors in the apparatus. This second phase is the more frequent usage of the present method and apparatus for a variety of applications.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: April 23, 2019
    Assignee: InvenSense, Inc.
    Inventors: Medhat Omr, Ahmed Wahdan, Jacques Georgy, Aboelmagd Noureldin
  • Publication number: 20190086211
    Abstract: The present disclosure relates to methods of enhancing a navigation solution about a device and a platform, wherein the mobility of the device may be constrained or unconstrained within the platform, and wherein the navigation solution is provided even in the absence of normal navigational information updates (such as, for example, GNSS). More specifically, the present method comprises utilizing measurements from sensors (e.g. accelerometers, gyroscopes, magnetometers etc.) within the device to calculate and resolve the attitude of the device and the platform, and the attitude misalignment between the device and the platform.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 21, 2019
    Applicant: InvenSense, Inc.
    Inventors: Jacques Georgy, Zainab Syed, Christopher Goodall, Mohamed Atia, Aboelmagd Noureldin, Naser El-Sheimy
  • Patent number: 10203207
    Abstract: The present disclosure relates to methods of enhancing a navigation solution about a device and a platform, wherein the mobility of the device may be constrained or unconstrained within the platform, and wherein the navigation solution is provided even in the absence of normal navigational information updates (such as, for example, GNSS). More specifically, the present method comprises utilizing measurements from sensors (e.g. accelerometers, gyroscopes, magnetometers etc.) within the device to calculate and resolve the attitude of the device and the platform, and the attitude misalignment between the device and the platform.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: February 12, 2019
    Assignee: InvenSense, Inc.
    Inventors: Jacques Georgy, Zainab Syed, Christopher Goodall, Mohamed Atia, Aboelmagd Noureldin, Naser El-Sheimy
  • Patent number: 10082583
    Abstract: A navigation module for providing a real-time INS/GNSS navigation solution for a moving object comprising a receiver for receiving absolute navigational information from an external source and an assembly of self-container sensors for generating navigational information. The module also contains a processor coupled to receive the output information from the receiver and sensor assembly, and integrate the output information in real-time to produce an overall navigation solution. The overall navigation solution will contain a main navigation solution task, and at least one other task, where the other task is used to enhance the overall navigation solution.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: September 25, 2018
    Assignee: InvenSense, Inc.
    Inventors: Jacques Georgy, Christopher Goodall, Mohamed Atia, Walid Abdelfatah, Zhi Shen, Aboelmagd Noureldin, Husain Syed
  • Patent number: 9784582
    Abstract: A navigation module and method for providing an INS/GNSS navigation solution for a device that can either be tethered or move freely within a moving platform is provided, comprising a receiver for receiving absolute navigational information from an external source (e.g., such as a satellite), an assembly of self-contained sensors capable of obtaining readings (e.g. such as relative or non-reference based navigational information) about the device, and further comprising at least one processor, coupled to receive the output information from the receiver and sensor assembly, and operative to integrate the output information to produce an enhanced navigation solution. The at least one processor may operate to provide a navigation solution by benefiting from nonlinear models and filters that do not suffer from approximation or linearization and which enhance the navigation solution of the device.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: October 10, 2017
    Assignee: InvenSense, Inc.
    Inventors: Jacques Georgy, Aboelmagd Noureldin, Zainab Syed, Chris Goodall
  • Patent number: 9562965
    Abstract: A two-filter based method of detecting and tracking a target that can track an unknown and time-varying number of targets, while keeping continuous track, even in scenarios with large number of false contacts or missing measurements, is provided. More specifically, a first filter provides target detection, a second filter provides target tracking of the detected targets, and a clustering technique that operates after the first filter. The first filter starts with a uniform distribution over the surveillance area and resets periodically after the clustering technique is run. When the clustering technique runs, it detects the clusters corresponding to the different targets and passes them to the second filter that tracks these targets.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: February 7, 2017
    Inventors: Jacques Georgy, Aboelmagd Noureldin
  • Patent number: 9488480
    Abstract: A navigation module and method for providing an INS/GNSS navigation solution for a moving platform, comprising a receiver for receiving absolute navigational information from an external source (e.g., such as a satellite), means for obtaining speed or velocity information and an assembly of self-contained sensors capable of obtaining readings (e.g., such as relative or non-reference based navigational information) about the moving platform, and further comprising at least one processor, coupled to receive the output information from the receiver, sensor assembly and means for obtaining speed or velocity information, and operative to integrate the output information to produce a navigation solution. The at least one processor may operate to provide a navigation solution by using the speed or velocity information to decouple the actual motion of the platform from the readings of the sensor assembly.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: November 8, 2016
    Assignee: InvenSense, Inc.
    Inventors: Jacques Georgy, Aboelmagd Noureldin
  • Patent number: 9423509
    Abstract: A moving platform INS range corrector (“MPIRC”) module and its method of operation for providing navigation and positioning information. The module comprises: means, such as a receiver, for receiving a first set of absolute navigational information from an external source (such as satellites in case of GNSS); an inertial sensor unit for generating a second set of navigational information at the module; and a transceiver, for receiving and/or transmitting signals and estimating distance measurement from a known position and receiving position coordinates. The navigational information is used by a processor programmed with a core algorithm, to produce a navigation solution (which comprises position, velocity and attitude). The system has the following attributes: the solution is produced seamlessly, even if one source of navigational information is temporarily out of service; the accuracy of the solution is assisted by use of distance and position coordinate measurement from a known position.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: August 23, 2016
    Assignee: Trusted Positioning Inc.
    Inventors: Jacques Georgy, Zainab Syed, Chris Goodall, Naser El-Sheimy, Aboelmagd Noureldin
  • Publication number: 20160216119
    Abstract: The present disclosure relates to a method and system for providing and enhanced navigation solution of a device within a platform (such as for example person, vehicle, or vessel of any type), wherein the device is within the platform and may be strapped or non-strapped to the platform, wherein in case of non-strapped the mobility of the device may be constrained or unconstrained within the platform, wherein the enhancement of the navigation solution is through multiple sensor assemblies, wherein the multiple sensors assemblies are not necessarily all on the device, and wherein the multiple sensors assemblies are within the platform. This method works for a navigation solution utilizing measurements from sensors (such as for example, accelerometers, gyroscopes, magnetometers etc.) whether in the presence or in the absence of absolute navigational information (such as, for example, GNSS or WiFi positioning).
    Type: Application
    Filed: September 17, 2014
    Publication date: July 28, 2016
    Inventors: Medhat Omr, Jacques Georgy, Aboelmagd Noureldin
  • Publication number: 20160216112
    Abstract: The present disclosure relates to a method and apparatus for determining the misalignment between a device and a platform (such as for example a vessel or vehicle) using radius of rotation of the device, wherein mobility of the device may be constrained or unconstrained within the platform. The device may be moved or tilted to any orientation within the platform and still provide a seamless navigation solution without degrading the performance of this navigation solution. This method can utilize measurements (readings) from sensors (such as for example, accelerometers, gyroscopes, etc.) whether in the presence or in the absence of navigational information updates (such as, for example, Global Navigation Satellite System (GNSS) or WiFi positioning).
    Type: Application
    Filed: September 8, 2014
    Publication date: July 28, 2016
    Inventors: Jacques Georgy, Medhat Omr, Aboelmagd Noureldin
  • Publication number: 20160169703
    Abstract: Systems and methods are disclosed for characterizing on foot motion of a user with a portable device by obtaining parameters sufficient to characterize the on foot motion of the user from multiple sensor assemblies. Each additional sensor assembly may be independent of each other. The characterization of on foot motion is provided by synthesizing the parameters from the sensor assemblies. Characterization of on foot motion may include detecting a step, estimating step length, or both.
    Type: Application
    Filed: February 9, 2015
    Publication date: June 16, 2016
    Inventors: Medhat Omr, Jacques Georgy, Aboelmagd Noureldin
  • Publication number: 20150362330
    Abstract: The present disclosure relates to a method and system for estimating varying step length for on foot motion (such as for example walking or running). The present method and apparatus is able to be used in anyone or both of two different phases. In some embodiments, the first phase is used. In some other embodiments, the second phase is used. In a third group of embodiments, the first phase is used, and then the second phase is used. The first phase is a model-building phase done offline to obtain the nonlinear model for the step length as a function of different parameters that represent human motion dynamics. A nonlinear system identification technique is used for building this model. In the second phase the nonlinear model is used to calculate the step length from the different parameters that represent human motion dynamics used as input to the model. These parameters are obtained from sensors readings from the sensors in the apparatus.
    Type: Application
    Filed: January 30, 2014
    Publication date: December 17, 2015
    Inventors: Medhat Omr, Ahmed Wahdan, Jacques Georgy, Aboelmagd Noureldin
  • Publication number: 20150354980
    Abstract: A method and apparatus for fast magnetometer calibration with little space coverage is described herein. The present method and apparatus is capable of performing both 2-dimensional (2D) and 3-dimensional (3D) calibration for a magnetometer (magnetic sensor) and calculating calibration parameters. The present method and apparatus does not need the user to be involved in the calibration process and there are no required specific movements that the user should perform. The present method and apparatus performs magnetometer calibration in 2D or 3D depending on the natural device movements whatever the application that the magnetometer is used in.
    Type: Application
    Filed: March 5, 2014
    Publication date: December 10, 2015
    Inventors: Ahmed Wahdan, Jacques Georgy, Walid Abdelfatah, Aboelmagd Noureldin