Patents by Inventor Adam M. Payne

Adam M. Payne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140238478
    Abstract: Back junction solar cells having improved emitter layer coverage and methods for their manufacture are disclosed. In one embodiment, a back junction solar cell includes an n-type base layer having an emitter layer formed from a first p-type doped region (e.g., formed by liquid phase epitaxial regrowth) and a second p-type doped region (e.g., formed by ion implantation) that extends beyond the first region. In various embodiments, this configuration permits the first p-type doped region to be formed with a border between it and the edges of the wafer (e.g., to prevent inadvertent shunting of the cell), while the second p-type doped region extends the emitter layer to improve emitter layer coverage. In certain embodiments, the second doped p-type region may extend to the edges of the wafer's n-type base layer.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Applicant: SUNIVA, INC.
    Inventors: Daniel L Meier, Xiaoyan Wang, Adam M Payne, Atul Gupta
  • Publication number: 20120279563
    Abstract: Interconnect apparatus and methods for their manufacture are disclosed. An example method for forming a solderable connection to a conductive surface may include forming one or more solderable metal regions on the conductive surface, for example an aluminum surface. The method may comprise applying a solder layer to the one or more solderable metal regions to form one or more soldered metal regions. The method may further comprise depositing one or more solderable metal regions on the conductive surface by plasma deposition. In other examples, the one or more solderable metal regions may be sputtered. Additionally, the method may comprise applying a flux to the one or more solderable metal regions prior to applying the solder layer to the one or more solderable metal regions. An interconnect ribbon may be soldered to at least one of the solder layer or the solderable metal regions. Associated interconnect apparatus are also provided.
    Type: Application
    Filed: May 2, 2011
    Publication date: November 8, 2012
    Inventors: Daniel Meier, Vijay Yelundur, Vinodh Chandrasekaran, Adam M. Payne, Sheri X. Wang
  • Patent number: 8241945
    Abstract: Solar cells and methods for fabrication thereof are provided. A method may include forming a via through at least one dielectric layer formed on a semiconductor wafer by using a laser to ablate a region of the at least one dielectric layer such that at least a portion of the surface of the semiconductor wafer is exposed by the via. The method may further include applying a self-doping metal paste to the via. The method may additionally include heating the semiconductor wafer and self-doping metal paste to a temperature sufficient to drive at least some dopant from the self-doping metal paste into the portion of the surface of the semiconductor wafer exposed by the via to form a selective emitter region and a contact overlying and self-aligned to the selective emitter region.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: August 14, 2012
    Assignee: Suniva, Inc.
    Inventors: Adam M. Payne, Daniel L. Meier, Vinodh Chandrasekaran
  • Publication number: 20110132448
    Abstract: Solar cells and methods for fabrication thereof are provided. A method may include forming a via through at least one dielectric layer formed on a semiconductor wafer by using a laser to ablate a region of the at least one dielectric layer such that at least a portion of the surface of the semiconductor wafer is exposed by the via. The method may further include applying a self-doping metal paste to the via. The method may additionally include heating the semiconductor wafer and self-doping metal paste to a temperature sufficient to drive at least some dopant from the self-doping metal paste into the portion of the surface of the semiconductor wafer exposed by the via to form a selective emitter region and a contact overlying and self-aligned to the selective emitter region.
    Type: Application
    Filed: February 8, 2010
    Publication date: June 9, 2011
    Inventors: Adam M. Payne, Daniel L. Meier, Vinodh Chandrasekaran
  • Patent number: 7002697
    Abstract: An optical instrument including: a thermo-optically tunable, thin film, free-space interference filter having a tunable passband which functions as a wavelength selector, the filter including a sequence of alternating layers of amorphous silicon and a dielectric material deposited one on top of the other and forming a Fabry-Perot cavity structure having: a first multi-layer thin film interference structure forming a first mirror; a thin-film spacer layer deposited on top of the first multi-layer interference structure, the thin-film spacer layer made of amorphous silicon; and a second multi-layer thin film interference structure deposited on top of the thin-film spacer layer and forming a second mirror; a lens for coupling an optical beam into the filter; an optical detector for receiving the optical beam after the optical beam has interacted with the interference filter; and circuitry for heating the thermo-optically tunable interference filter to control a location of the passband.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: February 21, 2006
    Assignee: Aegis Semiconductor, Inc.
    Inventors: Lawrence H. Domash, Adam M. Payne, Eugene Y. Ma, Nikolay Nemchuk, Ming Wu, Robert Murano, Steven Sherman, Matthias Wagner
  • Patent number: 6879014
    Abstract: Materials suitable for fabricating optical monitors include amorphous, polycrystalline and microcrystalline materials. Semitransparent photodetector materials may be based on silicon or silicon and germanium alloys. Conductors for connecting to and contacting the photodetector may be made from various transparent oxides, including zinc oxide, tin oxide and indium tin oxide. Optical monitor structures based on PIN diodes take advantage of the materials disclosed. Various contact, lineout, substrate and interconnect structures optimize the monitors for integration with various light sources, including vertical cavity surface emitting laser (VCSEL) arrays. Complete integrated structures include a light source, optical monitor and either a package or waveguide into which light is directed.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: April 12, 2005
    Assignee: Aegis Semiconductor, Inc.
    Inventors: Sigurd Wagner, Matthias Wagner, Eugene Y. Ma, Adam M. Payne
  • Patent number: 6670599
    Abstract: Materials suitable for fabricating optical monitors include amorphous, polycrystalline and microcrystalline materials. Semitransparent photodetector materials may be based on silicon or silicon and germanium alloys. Conductors for connecting to and contacting the photodetector may be made from various transparent oxides, including zinc oxide, tin oxide and indium tin oxide. Optical monitor structures based on PIN diodes take advantage of the materials disclosed. Various contact, lineout, substrate and interconnect structures optimize the monitors for integration with various light sources, including vertical cavity surface emitting laser (VCSEL) arrays. Complete integrated structures include a light source, optical monitor and either a package or waveguide into which light is directed.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: December 30, 2003
    Assignee: Aegis Semiconductor, Inc.
    Inventors: Sigurd Wagner, Matthias Wagner, Eugene Y. Ma, Adam M. Payne
  • Publication number: 20030072009
    Abstract: An optical instrument may include a tunable free-space filter as a wavelength selector. That optical instrument may be an optical spectrum analyzer (OSA). Indeed, the OSA may be constructed and arranged as an optical channel monitor for wavelength-division multiplexed optical communication systems. The tunable free-space filter may be a tunable thin film filter (TTFF). The TTFF may be thermo-optically tunable. The tunable filter may be a multi-layer film structure incorporating thin film semiconductor materials. The temperature, and hence the wavelength, of the TTFF may be controlled by various heating and cooling structures. Various TTFF structures are also possible. The TTFF may have a single-cavity Fabry-Perot structure or may have a multi-cavity structure. Packaging variants can also be made. Any one or more of several calibration aids can be included, such as an external source of one or more known wavelength signals, or an internal source of one or more known wavelength signals.
    Type: Application
    Filed: August 2, 2002
    Publication date: April 17, 2003
    Inventors: Lawrence H. Domash, Adam M. Payne, Eugene Y. Ma, Nikolay Nemchuk, Ming Wu, Robert Murano, Steven Sherman, Matthias Wagner
  • Publication number: 20020185588
    Abstract: Materials suitable for fabricating optical monitors include amorphous, polycrystalline and microcrystalline materials. Semitransparent photodetector materials may be based on silicon or silicon and germanium alloys. Conductors for connecting to and contacting the photodetector may be made from various transparent oxides, including zinc oxide, tin oxide and indium tin oxide. Optical monitor structures based on PIN diodes take advantage of the materials disclosed. Various contact, lineout, substrate and interconnect structures optimize the monitors for integration with various light sources, including vertical cavity surface emitting laser (VCSEL) arrays. Complete integrated structures include a light source, optical monitor and either a package or waveguide into which light is directed.
    Type: Application
    Filed: March 20, 2001
    Publication date: December 12, 2002
    Inventors: Sigurd Wagner, Matthias Wagner, Eugene Y. Ma, Adam M. Payne
  • Publication number: 20020145139
    Abstract: Materials suitable for fabricating optical monitors include amorphous, polycrystalline and microcrystalline materials. Semitransparent photodetector materials may be based on silicon or silicon and germanium alloys. Conductors for connecting to and contacting the photodetector may be made from various transparent oxides, including zinc oxide, tin oxide and indium tin oxide. Optical monitor structures based on PIN diodes take advantage of the materials disclosed. Various contact, lineout, substrate and interconnect structures optimize the monitors for integration with various light sources, including vertical cavity surface emitting laser (VCSEL) arrays. Complete integrated structures include a light source, optical monitor and either a package or waveguide into which light is directed.
    Type: Application
    Filed: March 20, 2001
    Publication date: October 10, 2002
    Inventors: Sigurd Wagner, Matthias Wagner, Eugene Y. Ma, Adam M. Payne
  • Publication number: 20020092963
    Abstract: An optical system including a steered beam, further includes a source of a light beam; a device which receives the light beam and steers it to form the steered beam; a target of the steered beam; and a semi-transparent sensor having an output signal indicative of a deviation of the steered beam from the target. A method of performing real-time control of an optical switch includes steering an optical beam onto a target within the switch; measuring a deviation of the optical beam from a nominal center of the target, while the optical beam is on the target; and correcting the direction of the optical beam to the nominal center of the target.
    Type: Application
    Filed: October 19, 2001
    Publication date: July 18, 2002
    Inventors: Lawrence H. Domash, Eugene Y. Ma, Adam M. Payne, Matthias Wagner