Patents by Inventor Adrianus Franciscus Petrus Engelen

Adrianus Franciscus Petrus Engelen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10222703
    Abstract: A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam having the desired illumination mode with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: March 5, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Heine Melle Mulder, Johannes Jacobus Matheus Baselmans, Adrianus Franciscus Petrus Engelen, Markus Franciscus Antonius Eurlings, Hendrikus Robertus Marie Van Greevenbroek, Paul Van Der Veen, Patricius Aloysius Jacobus Tinnemans, Wilfred Edward Endendijk
  • Patent number: 9964853
    Abstract: A method of determining exposure dose of a lithographic apparatus used in a lithographic process on a substrate. Using the lithographic process to produce a first structure on the substrate, the first structure having a dose-sensitive feature which has a form that depends on exposure dose of the lithographic apparatus on the substrate. Using the lithographic process to produce a second structure on the substrate, the second structure having a dose-sensitive feature which has a form that depends on the exposure dose of the lithographic apparatus but which has a different sensitivity to the exposure dose than the first structure. Detecting scattered radiation while illuminating the first and second structures with radiation to obtain first and second scatterometer signals. Using the first and second scatterometer signals to determine an exposure dose value used to produce at least one of the first and second structures.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: May 8, 2018
    Assignee: ASML Netherlands B.V.
    Inventors: Peter Clement Paul Vanoppen, Eric Jos Anton Brouwer, Hugo Augustinus Joseph Cramer, Jan Hendrik Den Besten, Adrianus Franciscus Petrus Engelen, Paul Christiaan Hinnen
  • Publication number: 20170315450
    Abstract: A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam having the desired illumination mode with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.
    Type: Application
    Filed: July 18, 2017
    Publication date: November 2, 2017
    Applicant: ASML NETHERLANDS B. V.
    Inventors: Heine Melle MULDER, Johannes Jacobus Matheus BASELMANS, Adrianus Franciscus Petrus ENGELEN, Markus Franciscus Antonius EURLINGS, Hendrikus Robertus Marie VAN GREEVENBROEK, Paul VAN DER VEEN, Patricius Aloysius Jacobus TINNEMANS, Wilfred Edward ENDENDIJK
  • Patent number: 9778575
    Abstract: A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam having the desired illumination mode with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: October 3, 2017
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Heine Melle Mulder, Johannes Jacobus Matheus Baselmans, Adrianus Franciscus Petrus Engelen, Markus Franciscus Antonius Eurlings, Hendrikus Robertus Marie Van Greevenbroek, Paul Van Der Veen, Patricius Aloysius Jacobus Tinnemans, Wilfred Edward Endendijk
  • Publication number: 20160116848
    Abstract: A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam having the desired illumination mode with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.
    Type: Application
    Filed: January 6, 2016
    Publication date: April 28, 2016
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Heine Melle MULDER, Johannes Jacobus Matheus BASELMANS, Adrianus Franciscus Petrus ENGELEN, Markus Franciscus Antonius EURLINGS, Hendrikus Robertus Marie VAN GREEVENBROEK, Paul VAN DER VEEN, Patricius Aloysius Jacobus TINNEMANS, Wilfred Edward ENDENDIJK
  • Patent number: 9285685
    Abstract: In an immersion lithography apparatus or device manufacturing method, the position of focus of the projected image is changed during imaging to increase focus latitude. In an embodiment, the focus may be varied using the liquid supply system of the immersion lithographic apparatus.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: March 15, 2016
    Assignees: ASML NETHERLANDS B.V., CARL ZEISS SMT GmbH
    Inventors: Bob Streefkerk, Johannes Jacobus Matheus Baselmans, Adrianus Franciscus Petrus Engelen, Jozef Maria Finders, Paul Gräupner, Johannes Catharinus Hubertus Mulkens, Jan Bernard Plechelmus Van Schoot
  • Patent number: 9250536
    Abstract: A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam having the desired illumination mode with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: February 2, 2016
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Heine Melle Mulder, Johannes Jacobus Matheus Baselmans, Adrianus Franciscus Petrus Engelen, Markus Franciscus Antonius Eurlings, Hendrikus Robertus Marie Greevenbroek, Patricius Aloysius Jacobus Tinnemans, Paul Van Der Veen, Wilfred Edward Endendijk
  • Publication number: 20150293458
    Abstract: A method of determining exposure dose of a lithographic apparatus used in a lithographic process on a substrate. Using the lithographic process to produce a first structure on the substrate, the first structure having a dose-sensitive feature which has a form that depends on exposure dose of the lithographic apparatus on the substrate. Using the lithographic process to produce a second structure on the substrate, the second structure having a dose-sensitive feature which has a form that depends on the exposure dose of the lithographic apparatus but which has a different sensitivity to the exposure dose than the first structure. Detecting scattered radiation while illuminating the first and second structures with radiation to obtain first and second scatterometer signals. Using the first and second scatterometer signals to determine an exposure dose value used to produce at least one of the first and second structures.
    Type: Application
    Filed: November 22, 2013
    Publication date: October 15, 2015
    Applicant: ASML Netherlands B.V.
    Inventors: Peter Clement Paul Vanoppen, Eric Jos Anton Brouwer, Hugo Augustinus Joseph Cramer, Jan Hendrik Den Besten, Adrianus Franciscus Petrus Engelen, Paul Christiaan Hinnen
  • Patent number: 8937706
    Abstract: A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: January 20, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Heine Melle Mulder, Johannes Jacobus Matheus Baselmans, Adrianus Franciscus Petrus Engelen, Markus Franciscus Antonius Eurlings, Hendrikus Robertus Marie Van Greevenbroek, Paul Van Der Veen
  • Publication number: 20140293248
    Abstract: In an immersion lithography apparatus or device manufacturing method, the position of focus of the projected image is changed during imaging to increase focus latitude. In an embodiment, the focus may be varied using the liquid supply system of the immersion lithographic apparatus.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 2, 2014
    Applicants: ASML NETHERLANDS B.V., CARL ZEISS SMT AG
    Inventors: Bob STREEFKERK, Johannes Jacobus Matheus BASELMANS, Adrianus Franciscus Petrus ENGELEN, Jozef Maria FINDERS, Paul GRÄUPNER, Johannes Catharinus Hubertus MULKENS, Jan Bernard Plechelmus VAN SCHOOT
  • Patent number: 8711330
    Abstract: In an immersion lithography apparatus or device manufacturing method, the position of focus of the projected image is changed during imaging to increase focus latitude. In an embodiment, the focus may be varied using the liquid supply system of the immersion lithographic apparatus.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: April 29, 2014
    Assignees: ASML Netherlands B.V., Carl Zeiss SMT AG
    Inventors: Bob Streefkerk, Johannes Jacobus Matheus Baselmans, Adrianus Franciscus Petrus Engelen, Jozef Maria Finders, Paul Graeupner, Johannes Catharinus Hubertus Mulkens, Jan Bernard Plechelmus Van Schoot
  • Publication number: 20120229786
    Abstract: A method of controlling a lithographic apparatus, the method including setting an illumination system of the lithographic apparatus to effect a selected illumination mode, measuring a value of a first parameter of the lithographic apparatus, calculating a value of a second parameter of a projected image of a feature of a test pattern having a plurality of features using a model of the lithographic apparatus and the measured value of the first parameter, and controlling the lithographic apparatus with reference to the calculated value of the second parameter.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 13, 2012
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Adrianus Franciscus Petrus ENGELEN, Henricus Johannes Lambertus MEGENS, Johannes Catharinus Hubertus MULKENS, Robert KAZINCZI, Jen-Shiang WANG
  • Patent number: 7961293
    Abstract: In an immersion lithography apparatus or device manufacturing method, the position of focus of the projected image is changed during imaging to increase focus latitude. In an embodiment, the focus may be varied using the liquid supply system of the immersion lithographic apparatus.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: June 14, 2011
    Assignees: ASML Netherlands B.V., Carl Zeiss SMT GmbH
    Inventors: Bob Streefkerk, Johannes Jacobus Matheus Baselmans, Adrianus Franciscus Petrus Engelen, Jozef Maria Finders, Paul Graeupner, Johannes Catharinus Hebertus Mulkens, Jan Bernard Plechelmus Van Schoot
  • Patent number: 7724351
    Abstract: A lithographic apparatus has an assembly to exchange optical elements in a pupil plane of its projection system. The optical elements may be pupil filters and may conform to the physical dimensions specified for a reticle standard, e.g. having sides substantially equal to 5, 6 or 9 inches.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: May 25, 2010
    Assignees: ASML Netherlands B.V., Carl Zeiss SMT AG
    Inventors: Erik Roelof Loopstra, Adrianus Franciscus Petrus Engelen, Bernardus Antonius Johannes Luttikhuis, Maria Johanna Agnes Rubingh, Johannes Martinus Andreas Hazenberg, Laurentius Catrinus Jorritsma, Johannes Wilhelmus De Klerk, Bernhard Geuppert, Aart Adrianus Van Beuzekom, Petrus Franciscus Wilhelmus Maria Mandigers, Franz Sorg, Peter Deufel, Peter Schaap
  • Publication number: 20090033902
    Abstract: A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam having the desired illumination mode with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.
    Type: Application
    Filed: March 21, 2008
    Publication date: February 5, 2009
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Heine Melle Mulder, Johannes Jacobus, Matheus Baselmans, Adrianus Franciscus, Petrus Engelen, Markus Franciscus, Antonius Eurlings, Hendrikus Robertus, Marie Greevenbroek, Patricius Aloysius, Jacobus Tinnemans, Paul Van Der Veen, Wilfred Edward Endendijk
  • Publication number: 20080239268
    Abstract: A device manufacturing method includes conditioning a beam of radiation using an illumination system. The conditioning includes controlling an array of individually controllable elements and associated optical components of the illumination system to convert the radiation beam into a desired illumination mode, the controlling including allocating different individually controllable elements to different parts of the illumination mode in accordance with an allocation scheme, the allocation scheme selected to provide a desired modification of one or more properties of the illumination mode, the radiation beam or both. The method also includes patterning the radiation beam with a pattern in its cross-section to form a patterned beam of radiation, and projecting the patterned radiation beam onto a target portion of a substrate.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Heine Melle Mulder, Johannes Jacobus Matheus Baselmans, Adrianus Franciscus Petrus Engelen, Markus Franciscus Antonius Eurlings, Hendrikus Robertus Marie Van Greevenbroek, Paul Van Der Veen
  • Patent number: 7352435
    Abstract: In an immersion lithography apparatus or device manufacturing method, the position of focus of the projected image is changed during imaging to increase focus latitude. In an embodiment, the focus may be varied using the liquid supply system of the immersion lithographic apparatus.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: April 1, 2008
    Assignees: ASML Netherlands B.V., Carl Zeiss SMT AG
    Inventors: Bob Streefkerk, Johannes Jacobus Matheus Baselmans, Adrianus Franciscus Petrus Engelen, Jozef Maria Finders, Paul Graeupner, Johannes Catharinus Hubertus Mulkens, Jan Bernard Plechelmus Van Schoot
  • Patent number: 6809797
    Abstract: A device manufacturing method is disclosed in which the aberration of the projection system of a lithographic projection apparatus is obtained in terms of the Zernike expansion. The field distribution of displacement error and focal plane distortion of the projected image are calculated on the basis of the Zernike aberration and sensitivity coefficients which quantify the relationship between Zernike aberration components and the error in the image. A calculation is then performed to determine the compensation to apply to the apparatus in order to minimize the error in the image. The compensation is then applied to the apparatus. The compensation may comprise increasing one component of aberration of the apparatus in order to decrease the effect of another aberration, such that, on balance, the image quality as a whole is improved.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: October 26, 2004
    Assignee: ASML Netherlands B.V.
    Inventors: Johannes Jacobus Matheus Baselmans, Adrianus Franciscus Petrus Engelen, Hugo Augustinus Joseph Cramer, Jozef Maria Finders, Carsten Kohler