Patents by Inventor Agustin Cabarlo

Agustin Cabarlo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7507084
    Abstract: A method and apparatus for on-line wash-down of a heat sink media bed in a regenerative heat exchanger of a regenerative fume incinerator is disclosed. When a heat sink media bed requires cleaning, the selected regenerative heat exchanger is cooled while the remaining regenerative heat exchangers are operated in their normal mode of operation. When the selected media bed reaches a temperature which is less than the thermal-shock temperature of the media material, a cleaning fluid is sprayed on the media surfaces through spray-pipes which are installed within the media bed. After the media surfaces are washed down, the selected regenerative heat-exchanger is reverted back to its normal mode of operation. The regenerative heat exchanger can also be automatically burnt-out of deposited gasifiable matter prior to the wash-down. Random or sequential burn-out and wash-down of the regenerative heat-exchangers can be performed.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: March 24, 2009
    Assignee: Pro-Environmental Inc
    Inventors: Joseph David Chiles, Jeffrey J. Yerkes, John G. Kirkland, Agustin Cabarlo, Anu D. Vij
  • Publication number: 20060073430
    Abstract: A method and apparatus for on-line wash-down of a heat sink media bed in a regenerative heat exchanger of a regenerative fume incinerator is disclosed. When a heat sink media bed requires cleaning, the selected regenerative heat exchanger is cooled while the remaining regenerative heat exchangers are operated in their normal mode of operation. When the selected media bed reaches a temperature which is less than the thermal-shock temperature of the media material, a cleaning fluid is sprayed on the media surfaces through spray-pipes which are installed within the media bed. After the media surfaces are washed down, the selected regenerative heat-exchanger is reverted back to its normal mode of operation. The regenerative heat exchanger can also be automatically burnt-out of deposited gasifiable matter prior to the wash-down. Random or sequential burn-out and wash-down of the regenerative heat-exchangers can be performed.
    Type: Application
    Filed: November 17, 2005
    Publication date: April 6, 2006
    Inventors: Joseph Chiles, Jeffrey Yerkes, John Kirkland, Agustin Cabarlo, Anu Vij
  • Patent number: 7017592
    Abstract: A method and apparatus for on-line wash-down of a heat sink media bed in a regenerative heat exchanger of a regenerative fume incinerator is disclosed. When a heat sink media bed requires cleaning, the selected regenerative heat exchanger is cooled while the remaining regenerative heat exchangers are operated in their normal mode of operation. When the selected media bed reaches a temperature which is less than the thermal-shock temperature of the media material, a cleaning fluid is sprayed on the media surfaces through spray-pipes which are installed within the media bed. After the media surfaces are washed down, the selected regenerative heat-exchanger is reverted back to its normal mode of operation. The regenerative heat exchanger can also be automatically burnt-out of deposited gasifiable matter prior to the wash-down. Random or sequential burn-out and wash-down of the regenerative heat-exchangers can be performed.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: March 28, 2006
    Assignee: Pro-Environmental Inc.
    Inventors: Joseph David Chiles, Jeffrey J. Yerkes, John G. Kirkland, Agustin Cabarlo, Anu D. Vij
  • Publication number: 20040123880
    Abstract: A method and apparatus for on-line wash-down of a heat sink media bed in a regenerative heat exchanger of a regenerative fume incinerator is disclosed. When a heat sink media bed requires cleaning, the selected regenerative heat exchanger is cooled while the remaining regenerative heat exchangers are operated in their normal mode of operation. When the selected media bed reaches a temperature which is less than the thermal-shock temperature of the media material, a cleaning fluid is sprayed on the media surfaces through spray-pipes which are installed within the media bed. After the media surfaces are washed down, the selected regenerative heat-exchanger is reverted back to its normal mode of operation. The regenerative heat exchanger can also be automatically burnt-out of deposited gasifiable matter prior to the wash-down. Random or sequential burn-out and wash-down of the regenerative heat-exchangers can be performed.
    Type: Application
    Filed: December 9, 2003
    Publication date: July 1, 2004
    Inventors: Joseph David Chiles, Jeffrey J. Yerkes, John G. Kirkland, Agustin Cabarlo, Anu D. Vij