Patents by Inventor Akihiro Yaguchi

Akihiro Yaguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6777816
    Abstract: A multi-chip module has at least two semiconductor chips. Each of the semiconductor chips has chip electrodes of the semiconductor chip, electrically conductive interconnections for electrically connection with the chip electrodes, electrically conductive lands for electrically connection with the interconnections, external terminals placed on the lands, and a stress-relaxation layer intervening between the lands and the semiconductor chip. The semiconductor chips are placed on a mounting board via the external terminals. The stress-relaxation layer of a first semiconductor chip is thicker than the stress-relaxation layer of a second semiconductor chip having a distance from a center thereof to an external terminal positioned at an outermost end portion thereof smaller than that of the first semiconductor chip.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: August 17, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Atsushi Kazama, Akihiro Yaguchi, Hideo Miura, Asao Nishimura
  • Publication number: 20040155323
    Abstract: As the semiconductor chip is large-sized, highly integrated and speeded up, it becomes difficult to pack the semiconductor chip together with leads in a package. In view of this difficulty, there has been adopted the package structure called the “Lead-On-Chip” or “Chip-On-Lead” structure in which the semiconductor and the leads are stacked and packed. In the package of this structure, according to the present invention, the gap between the leading end portions of the inner leads and the semiconductor chip is made wider than that between the inner lead portions except the leading end portions and the semiconductor chip thereby to reduce the stray capacity, to improve the signal transmission rate and to reduce the electrical noises.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 12, 2004
    Inventors: Gen Murakami, Kunihiro Tsubosaki, Masahiro Ichitani, Kunihiko Nishi, Ichiro Anjo, Asao Nishimura, Makoto Kitano, Akihiro Yaguchi, Sueo Kawai, Masatsugu Ogata, Syuuji Eguchi, Hiroyoshi Kokaku, Masanori Segawa, Hiroshi Hozoji, Takashi Yokoyama, Noriyuki Kinjo, Aizo Kaneda, Junichi Saeki, Shozo Nakamura, Akio Hasebe, Hiroshi Kikuchi, Isamu Yoshida, Takashi Yamazaki, Kazuyoshi Oshima, Tetsuro Matsumoto
  • Publication number: 20040108579
    Abstract: A multi-chip module has at least two semiconductor chips. Each of the semiconductor chips has chip electrodes of the semiconductor chip, electrically conductive interconnections for electrically connection with the chip electrodes, electrically conductive lands for electrically connection with the interconnections, external terminals placed on the lands, and a stress-relaxation layer intervening between the lands and the semiconductor chip. The semiconductor chips are placed on a mounting board via the external terminals. The stress-relaxation layer of a first semiconductor chip is thicker than the stress-relaxation layer of a second semiconductor chip having a distance from a center thereof to an external terminal positioned at an outermost end portion thereof smaller than that of the first semiconductor chip.
    Type: Application
    Filed: November 5, 2003
    Publication date: June 10, 2004
    Inventors: Atsushi Kazama, Akihiro Yaguchi, Hideo Miura, Asao Nishimura
  • Publication number: 20040087130
    Abstract: A small semiconductor device which can be fabricated at the wafer level has high reliability of external terminals with respect to distortion caused by differential thermal expansion between a semiconductor element of the device and a printed circuit board and has superior electrical performance achieved through reduced static capacitance of interconnections. A thick stress-moderating layer with a low elastic modulus is interposed between the semiconductor element and interconnections and lands and improves the reliability of external terminals by absorbing distortion caused by the differential thermal expansion. The thick stress-moderating layer also reduces static capacitance between the interconnections and internal interconnections of the semiconductor element. Even around element electrodes, where the stress-moderating layer is not formed, static capacitance is reduced by an insulating film interposed between the interconnections and the semiconductor element.
    Type: Application
    Filed: October 14, 2003
    Publication date: May 6, 2004
    Inventors: Atsushi Kazama, Hideo Miura, Akihiro Yaguchi
  • Patent number: 6720208
    Abstract: As the semiconductor chip is large-sized, highly integrated and speeded up, it becomes difficult to pack the semiconductor chip together with leads in a package. In view of this difficulty, there has been adopted the package structure called the “Lead-On-Chip” or “Chip-On-Lead” structure in which the semiconductor and the leads are stacked and packed. In the package of this structure, according to the present invention, the gap between the leading end portions of the inner leads and the semiconductor chip is made wider than that between the inner lead portions except the leading end portions and the semiconductor chip thereby to reduce the stray capacity, to improve the signal transmission rate and to reduce the electrical noises.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: April 13, 2004
    Assignee: Renesas Technology Corporation
    Inventors: Gen Murakami, Kunihiro Tsubosaki, Masahiro Ichitani, Kunihiko Nishi, Ichiro Anjo, Asao Nishimura, Makoto Kitano, Akihiro Yaguchi, Sueo Kawai, Masatsugu Ogata, Syuuji Eguchi, Hiroyoshi Kokaku, Masanori Segawa, Hiroshi Hozoji, Takashi Yokoyama, Noriyuki Kinjo, Aizo Kaneda, Junichi Saeki, Shozo Nakamura, Akio Hasebe, Hiroshi Kikuchi, Isamu Yoshida, Takashi Yamazaki, Kazuyoshi Oshima, Tetsuro Matsumoto
  • Patent number: 6696765
    Abstract: A multi-chip module has at least two semiconductor chips. Each of the semiconductor chips has chip electrodes of the semiconductor chip, electrically conductive interconnections for electrically connection with the chip electrodes, electrically conductive lands for electrically connection with the interconnections, external terminals placed on the lands, and a stress-relaxation layer intervening between the lands and the semiconductor chip. The semiconductor chips are placed on a mounting board via the external terminals. The stress-relaxation layer of a first semiconductor chip is thicker than the stress-relaxation layer of a second semiconductor chip having a distance from a center thereof to an external terminal positioned at an outermost end portion thereof smaller than that of the first semiconductor chip.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: February 24, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Atsushi Kazama, Akihiro Yaguchi, Hideo Miura, Asao Nishimura
  • Patent number: 6639315
    Abstract: A small semiconductor device which can be fabricated at the wafer level has high reliability of external terminals with respect to distortion caused by differential thermal expansion between a semiconductor element of the device and a printed circuit board and has superior electrical performance achieved through reduced static capacitance of interconnections. A thick stress-moderating layer with a low elastic modulus is interposed between the semiconductor element and interconnections and lands and improves the reliability of external terminals by absorbing distortion caused by the differential thermal expansion. The thick stress-moderating layer also reduces static capacitance between the interconnections and internal interconnections of the semiconductor element. Even around element electrodes, where the stress-moderating layer is not formed, static capacitance is reduced by an insulating film interposed between the interconnections and the semiconductor element.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: October 28, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Atsushi Kazama, Hideo Miura, Akihiro Yaguchi
  • Patent number: 6621154
    Abstract: A miniature semiconductor apparatus is outstanding in reflow resistance, temperature cycle property, and PCT resistance corresponding to high density packing, high densification, and speeding up of processing. The semiconductor apparatus has at least one stress cushioning layer on a semiconductor element with an electrode pad formed, having a conductor on the stress cushioning layer, having a conductor for conducting the electrode pad and conductor via a through hole passing through the stress cushioning layer between the electrode pad and the conductor, having an external electrode on the conductor, and having a stress cushioning layer in an area other than the area where the external electrode exists and a conductor protection layer on the conductor, wherein the stress cushioning layer includes crosslinking acrylonitrile-butadiene rubber having an epoxy resin which is solid at 25° C. and a carboxyl group.
    Type: Grant
    Filed: September 28, 2000
    Date of Patent: September 16, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Toshiya Satoh, Masahiko Ogino, Tadanori Segawa, Takao Miwa, Akira Nagai, Akihiro Yaguchi, Ichiro Anjo, Asao Nishimura
  • Publication number: 20030127712
    Abstract: As the semiconductor chip is large-sized, highly integrated and speeded up, it becomes difficult to pack the semiconductor chip together with leads in a package. In view of this difficulty, there has been adopted the package structure called the “Lead-On-Chip” or “Chip-On-Lead” structure in which the semiconductor and the leads are stacked and packed. In the package of this structure, according to the present invention, the gap between the leading end portions of the inner leads and the semiconductor chip is made wider than that between the inner lead portions except the leading end portions and the semiconductor chip thereby to reduce the stray capacity, to improve the signal transmission rate and to reduce the electrical noises.
    Type: Application
    Filed: December 19, 2002
    Publication date: July 10, 2003
    Inventors: Gen Murakami, Kunihiro Tsubosaki, Masahiro Ichitani, Kunihiko Nishi, Ichiro Anjo, Asao Nishimura, Makoto Kitano, Akihiro Yaguchi, Sueo Kawai, Masatsugu Ogata, Syuuji Eguchi, Hiroyoshi Kokaku, Masanori Segawa, Hiroshi Hozoji, Takashi Yokoyama, Noriyuki Kinjo, Aizo Kaneda, Junichi Saeki, Shozo Nakamura, Akio Hasebe, Hiroshi Kikuchi, Isamu Yoshida, Takashi Yamazaki, Kazuyoshi Oshima, Tetsuro Matsumoto
  • Publication number: 20030094702
    Abstract: A multi-chip module has at least two semiconductor chips. Each of the semiconductor chips has chip electrodes of the semiconductor chip, electrically conductive interconnections for electrically connection with the chip electrodes, electrically conductive lands for electrically connection with the interconnections, external terminals placed on the lands, and a stress-relaxation layer intervening between the lands and the semiconductor chip. The semiconductor chips are placed on a mounting board via the external terminals. The stress-relaxation layer of a first semiconductor chip is thicker than the stress-relaxation layer of a second semiconductor chip having a distance from a center thereof to an external terminal positioned at an outermost end portion thereof smaller than that of the first semiconductor chip.
    Type: Application
    Filed: November 19, 2001
    Publication date: May 22, 2003
    Inventors: Atsushi Kazama, Akihiro Yaguchi, Hideo Miura, Asao Nishimura
  • Patent number: 6531760
    Abstract: As the semiconductor chip is large-sized, highly integrated and speeded up, it becomes difficult to pack the semiconductor chip together with leads in a package. In view of this difficulty, there has been adopted the package structure called the “Lead-On-Chip” or “Chip-On-Lead” structure in which the semiconductor and the leads are stacked and packed. In the package of this structure, according to the present invention, the gap between the leading end portions of the inner leads and the semiconductor chip is made wider than that between the inner lead portions except the leading end portions and the semiconductor chip thereby to reduce the stray capacity, to improve the signal transmission rate and to reduce the electrical noises.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: March 11, 2003
    Inventors: Gen Murakami, Kunihiro Tsubosaki, Masahiro Ichitani, Kunihiko Nishi, Ichiro Anjo, Asao Nishimura, Makoto Kitano, Akihiro Yaguchi, Sueo Kawai, Masatsugu Ogata, Syuuji Eguchi, Hiroyoshi Kokaku, Masanori Segawa, Hiroshi Hozoji, Takashi Yokoyama, Noriyuki Kinjo, Aizo Kaneda, Junichi Saeki, Shozo Nakamura, Akio Hasebe, Hiroshi Kikuchi, Isamu Yoshida, Takashi Yamazaki, Kazuyoshi Oshima, Tetsuro Matsumoto
  • Patent number: 6512176
    Abstract: In a ball grid array type semiconductor device mounted on a printed wiring board, the external terminals can be prevented from being broken down even when the ambient temperature on the device is repeatedly changed. A flexible adhesive member for gluing the semiconductor chip to an insulating tape is provided to cover up to a region including the lands to which the external terminals are bonded and which are provided on the insulating tape surface. The flexible adhesive member for covering the lands may be replaced by a flexible low-elasticity member.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: January 28, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Akihiro Yaguchi, Ryo Haruta, Masahiro Ichitani
  • Patent number: 6465876
    Abstract: A semiconductor device which can improve the connection reliability of solder bumps and productivity in manufacturing. Insulating tape having wiring patterns on its surface is bond ed to a lead frame. Semiconductor elements are loaded and circuit formed surfaces and sides of the semiconductor elements are sealed with sealing resin. After arrangements of individual semiconductor devices are formed, the lead frame is separated into individual metal plates to form individual semiconductor devices. Such simultaneous production of a plurality of semiconductor devices enhances productivity, and improves flatness of the insulating tape, whereby the connection reliability of solder bumps is improved.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: October 15, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Kitano, Akihiro Yaguchi, Naotaka Tanaka, Takeshi Terasaki, Ichiro Anjoh, Ryo Haruta, Asao Nishimura, Junichi Saeki
  • Patent number: 6452256
    Abstract: A small semiconductor device close in size to a semiconductor chip which prevents warping of semiconductor chips or wafer and delamination of an interface from an interlayer insulating film, both caused by thermal stresses of a rewiring layer. The use of a Cu composite alloy containing 80 vol. % or less of Cu2O, which alloy has a smaller linear thermal expansion coefficient and a smaller elastic modulus than those of pure copper, as a main material of the rewiring layer can reduce the thermal stresses in the rewiring layer, realizing a semiconductor device in which warping of semiconductor chips or wafer and delamination of layers will not easily occur.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: September 17, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Atsushi Kazama, Akihiro Yaguchi, Hideo Miura
  • Publication number: 20020056561
    Abstract: In a ball grid array type semiconductor device mounted on a printed wiring board, the external terminals can be prevented from being broken down even when the ambient temperature on the device is repeatedly changed. A flexible adhesive member for gluing the semiconductor chip to an insulating tape is provided to cover up to a region including the lands to which the external terminals are bonded and which are provided on the insulating tape surface. The flexible adhesive member for covering the lands may be replaced by a flexible low-elasticity member.
    Type: Application
    Filed: January 16, 2002
    Publication date: May 16, 2002
    Inventors: Akihiro Yaguchi, Ryo Haruta, Masahiro Ichitani
  • Publication number: 20020034872
    Abstract: A small semiconductor device which can be fabricated at the wafer level has high reliability of external terminals with respect to distortion caused by differential thermal expansion between a semiconductor element of the device and a printed circuit board and has superior electrical performance achieved through reduced static capacitance of interconnections. A thick stress-moderating layer with a low elastic modulus is interposed between the semiconductor element and interconnections and lands and improves the reliability of external terminals by absorbing distortion caused by the differential thermal expansion. The thick stress-moderating layer also reduces static capacitance between the interconnections and internal interconnections of the semiconductor element. Even around element electrodes, where the stress-moderating layer is not formed, static capacitance is reduced by an insulating film interposed between the interconnections and the semiconductor element.
    Type: Application
    Filed: August 10, 2001
    Publication date: March 21, 2002
    Inventors: Atsushi Kazama, Hideo Miura, Akihiro Yaguchi
  • Patent number: 6348741
    Abstract: A manufacturing method makes it possible to produce a semiconductor apparatus which is outstanding in mounting reliability at a high manufacturing yield rate. A semiconductor apparatus, in which, on the surface of a semiconductor chip with a circuit and an electrode formed thereon, a stress cushioning layer is provided, except for a part where the electrode is, has a wiring layer connected to the electrode on the stress cushioning layer, an external protection film on the wiring layer and stress cushioning layer, a window where a part of the wiring layer is exposed at a predetermined location of the external protection film, and an external electrode which is electrically connected to the wiring layer via the window. The stress cushioning layer, wiring layer, conductor, external protection film, and external electrode are formed on the inside of the end of the semiconductor chip.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: February 19, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Masahiko Ogino, Takao Miwa, Toshiya Satoh, Akira Nagai, Tadanori Segawa, Akihiro Yaguchi, Ichiro Anjo, Asao Nishimura, Takumi Ueno
  • Patent number: 6340793
    Abstract: In a ball grid array type semiconductor device mounted on a printed wiring board, the external terminals can be prevented from being broken down even when the ambient temperature on the device is repeatedly changed. A flexible adhesive member for gluing the semiconductor chip to an insulating tape is provided to cover up to a region including the lands to which the external terminals are bonded and which are provided on the insulating tape surface. The flexible adhesive member for covering the lands may be replaced by a flexible low-elasticity member.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: January 22, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Akihiro Yaguchi, Ryo Haruta, Masahiro Ichitani
  • Patent number: 6326681
    Abstract: As the semiconductor chip is large-sized, highly integrated and speeded up, it becomes difficult to pack the semiconductor chip together with leads in a package. In view of this difficulty, there has been adopted the package structure called the “Lead-On-Chip” or “Chip-On-Lead” structure in which the semiconductor and the leads are stacked and packed. In the package of this structure, according to the present invention, the gap between the leading end portions of the inner leads and the semiconductor chip is made wider than that between the inner lead portions except the leading end portions and the semiconductor chip thereby to reduce the stray capacity, to improve the signal transmission rate and to reduce the electrical noises.
    Type: Grant
    Filed: January 13, 2000
    Date of Patent: December 4, 2001
    Assignee: Hitachi, LTD
    Inventors: Gen Murakami, Kunihiro Tsubosaki, Masahiro Ichitani, Kunihiko Nishi, Ichiro Anjo, Asao Nishimura, Makoto Kitano, Akihiro Yaguchi, Sueo Kawai, Masatsugu Ogata, Syuuji Eguchi, Hiroyoshi Kokaku, Masanori Segawa, Hiroshi Hozoji, Takashi Yokoyama, Noriyuki Kinjo, Aizo Kaneda, Junichi Saeki, Shozo Nakamura, Akio Hasebe, Hiroshi Kikuchi, Isamu Yoshida, Takashi Yamazaki, Kazuyoshi Oshima, Tetsuro Matsumoto
  • Patent number: RE37690
    Abstract: A lead frame and a semiconductor device wherein a through hole is formed in the center of a semiconductor chip-mounting surface of a chip pad at the center of the lead frame, the through hole being tapered or being one which corresponds to a surface area that is greater on the surface of the chip-mounting surface of the chip pad than on the surface of the side opposite to the chip-mounting surface thereof. This prevents the occurrence of cracks in the sealing plastic portion in the step of reflow soldering of the lead frame to the substrate.
    Type: Grant
    Filed: May 24, 1995
    Date of Patent: May 7, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Kitano, Sueo Kawai, Asao Nishimura, Hideo Miura, Akihiro Yaguchi, Chikako van Koten nee Kitabayashi, Ichio Shimizu, Toshio Hatsuda, Toshinori Ozaki, Toshio Hattori, Souji Sakata