Patents by Inventor Akio Tada

Akio Tada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9511338
    Abstract: Using a device for producing nanocarbon, a fluidized bed is formed by supplying a low hydrocarbon and oxygen to a fluid catalyst, and nanocarbon and hydrogen are produced by a decomposition reaction of the low hydrocarbon accompanied by a self-combustion of the low hydrocarbon and the oxygen. The device includes: a fluidized bed reactor for containing the fluid catalyst and for causing the self-combustion thereof while being supplied with the low hydrocarbon and the oxygen; a gas supplying unit connected to the fluidized bed reactor for supplying the low hydrocarbon and the oxygen to the fluidized bed reactor; an exhaust gas path connected to the fluidized bed reactor for exhausting an exhaust gas in the fluidized bed reactor to outside; and a supplying unit connected to the fluidized bed reactor for supplying the fluid catalyst to the fluidized bed reactor.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: December 6, 2016
    Assignees: THE JAPAN STEEL WORKS, LTD., National University Corporation Kitami Institute of Technology
    Inventors: Satoru Nakamura, Akio Tada
  • Patent number: 9498764
    Abstract: A synthesis gas and nanocarbon production method has a lower hydrocarbon decomposition step for decomposing lower hydrocarbon to produce hydrogen and nanocarbon, a carbon dioxide reduction step for reacting a part of the nanocarbon produced with carbon dioxide to produce carbon monoxide, and a mixing step for mixing the hydrogen and carbon monoxide produced in a predetermined ratio, thereby nanocarbon and a synthesis gas having a desired gas ratio can be simultaneously produced easily.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: November 22, 2016
    Assignees: THE JAPAN STEEL WORKS, LTD., National University Corporation Kitami Institute of Technology
    Inventors: Satoru Nakamura, Akio Tada
  • Patent number: 9463429
    Abstract: Using a device for producing nanocarbon, a fluidized bed is formed by supplying a low hydrocarbon and oxygen to a fluid catalyst, and nanocarbon and hydrogen are produced by a decomposition reaction of the low hydrocarbon accompanied by a self-combustion of the low hydrocarbon and the oxygen. The device includes: a fluidized bed reactor for containing the fluid catalyst and for causing the self-combustion thereof while being supplied with the low hydrocarbon and the oxygen; a gas supplying unit connected to the fluidized bed reactor for supplying the low hydrocarbon and the oxygen to the fluidized bed reactor; an exhaust gas path connected to the fluidized bed reactor for exhausting an exhaust gas in the fluidized bed reactor to outside; and a supplying unit connected to the fluidized bed reactor for supplying the fluid catalyst to the fluidized bed reactor.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: October 11, 2016
    Assignees: THE JAPAN STEEL WORKS, LTD., National University Corporation Kitami Institute of Technology
    Inventors: Satoru Nakamura, Akio Tada
  • Patent number: 9403682
    Abstract: A cylindrical screw feeder main body, catalyst feeding portions for introducing a catalyst into the screw feeder main body, low hydrocarbon feeding portions for introducing a low hydrocarbon into the screw feeder main body as a raw material, a screw for conveying the catalyst and nanocarbon produced by pyrolysis of the low hydrocarbon in the feeder main body, a solid matter discharging portion for discharging the catalyst and the nanocarbon conveyed by the screw out of the screw feeder main body and a gas discharging portion for discharging the unreacted low hydrocarbon and hydrogen produced by the pyrolysis of the low hydrocarbon out of the screw feeder main body are provided. Nanocarbon grown with the catalyst as top with time is continuously discharged out of the screw feeder main body while unused catalyst is being fed thereto at the same amount as that of nanocarbon, allowing efficient continuous reaction.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: August 2, 2016
    Assignees: National University Corporation Kitami Institute of Technology, THE JAPAN STEEL WORKS, LTD., KAJIMA CORPORATION
    Inventors: Akio Tada, Satoru Nakamura, Tetsunari Nakamura, Hajime Kakihara, Yoshitaka Togo, Kikuo Koseki, Hiroyuki Takasuna
  • Publication number: 20160199807
    Abstract: A synthesis gas and nanocarbon production method has a lower hydrocarbon decomposition step for decomposing lower hydrocarbon to produce hydrogen and nanocarbon, a carbon dioxide reduction step for reacting a part of the nanocarbon produced with carbon dioxide to produce carbon monoxide, and a mixing step for mixing the hydrogen and carbon monoxide produced in a predetermined ratio, thereby nanocarbon and a synthesis gas having a desired gas ratio can be simultaneously produced easily.
    Type: Application
    Filed: March 23, 2016
    Publication date: July 14, 2016
    Applicants: THE JAPAN STEEL WORKS, LTD., National University Corporation Kitami Institute of Technology
    Inventors: Satoru NAKAMURA, Akio TADA
  • Patent number: 9327970
    Abstract: A synthesis gas and nanocarbon production method has a lower hydrocarbon decomposition step for decomposing lower hydrocarbon to produce hydrogen and nanocarbon, a carbon dioxide reduction step for reacting a part of the nanocarbon produced with carbon dioxide to produce carbon monoxide, and a mixing step for mixing the hydrogen and carbon monoxide produced in a predetermined ratio, thereby nanocarbon and a synthesis gas having a desired gas ratio can be simultaneously produced easily.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: May 3, 2016
    Assignees: THE JAPAN STEEL WORKS, LTD., National Univeristy Corporation Kitami Institute of Technology
    Inventors: Satoru Nakamura, Akio Tada
  • Publication number: 20150158001
    Abstract: Using a device for producing nanocarbon, a fluidized bed is formed by supplying a low hydrocarbon and oxygen to a fluid catalyst, and nanocarbon and hydrogen are produced by a decomposition reaction of the low hydrocarbon accompanied by a self-combustion of the low hydrocarbon and the oxygen. The device includes: a fluidized bed reactor for containing the fluid catalyst and for causing the self-combustion thereof while being supplied with the low hydrocarbon and the oxygen; a gas supplying unit connected to the fluidized bed reactor for supplying the low hydrocarbon and the oxygen to the fluidized bed reactor; an exhaust gas path connected to the fluidized bed reactor for exhausting an exhaust gas in the fluidized bed reactor to outside; and a supplying unit connected to the fluidized bed reactor for supplying the fluid catalyst to the fluidized bed reactor.
    Type: Application
    Filed: February 11, 2015
    Publication date: June 11, 2015
    Applicants: THE JAPAN STEEL WORKS, LTD., National University Corporation Kitami Institute of Technology
    Inventors: Satoru NAKAMURA, Akio Tada
  • Publication number: 20140086820
    Abstract: Using a device for producing nanocarbon, a fluidized bed is formed by supplying a low hydrocarbon and oxygen to a fluid catalyst 1, and nanocarbon and hydrogen are produced by a decomposition reaction of the low hydrocarbon accompanied by a self-combustion of the low hydrocarbon and the oxygen, wherein the device for producing nanocarbon includes: a fluidized bed reactor 2 for containing, the fluid catalyst 1 and for causing the self-combustion of the low hydrocarbon and the oxygen while being supplied with the low hydrocarbon and the oxygen; a gas supplying unit 5 connected to the fluidized bed reactor 2 and for supplying the low hydrocarbon and the oxygen to the fluidized bed reactor 2; an exhaust gas path 8 connected to the fluidized bed reactor 2 and for exhausting an exhaust gas in the fluidized bed reactor 2 to outside; and a supplying unit 2a connected to the fluidized bed reactor 2 and for supplying the fluid catalyst 1 to the fluidized bed reactor 2.
    Type: Application
    Filed: May 10, 2012
    Publication date: March 27, 2014
    Applicants: National University Corporation Kitami Institute of Technology, THE JAPAN STEEL WORKS, LTD.
    Inventors: Satoru Nakamura, Akio Tada
  • Publication number: 20140005283
    Abstract: A synthesis gas and nanocarbon production method has a lower hydrocarbon decomposition step for decomposing lower hydrocarbon to produce hydrogen and nanocarbon, a carbon dioxide reduction step for reacting a part of the nanocarbon produced with carbon dioxide to produce carbon monoxide, and a mixing step for mixing the hydrogen and carbon monoxide produced in a predetermined ratio, thereby nanocarbon and a synthesis gas having a desired gas ratio can be simultaneously produced easily.
    Type: Application
    Filed: March 9, 2012
    Publication date: January 2, 2014
    Applicants: National University Corporation Kitami Institute of Technology, THE JAPAN STEEL WORKS, LTD.
    Inventors: Satoru Nakamura, Akio Tada
  • Patent number: 7947245
    Abstract: A cylindrical screw feeder main body, catalyst feeding portions for introducing a catalyst into the screw feeder main body, low hydrocarbon feeding portions for introducing a low hydrocarbon into the screw feeder main body as a raw material, a screw for conveying the catalyst and nanocarbon produced by pyrolysis of the low hydrocarbon in the feeder main body, a solid matter discharging portion for discharging the catalyst and the nanocarbon conveyed by the screw out of the screw feeder main body and a gas discharging portion for discharging the unreacted low hydrocarbon and hydrogen produced by the pyrolysis of the low hydrocarbon out of the screw feeder main body are provided. Nanocarbon grown with the catalyst as top with time is continuously discharged out of the screw feeder main body while unused catalyst is being fed thereto at the same amount as that of nanocarbon, allowing efficient continuous reaction.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: May 24, 2011
    Assignees: National University Corporation Kitami Institute of Technology, The Japan Steel Works, Ltd., Kajima Corporation
    Inventors: Akio Tada, Satoru Nakamura, Tetsunari Nakamura, Hajime Kakihara, Yoshitaka Togo, Kikuo Koseki, Hiroyuki Takasuna
  • Patent number: 7767182
    Abstract: In a reaction where a lower hydrocarbon is subjected to direct decomposition by using a catalyst to produce a functional nanocarbon and hydrogen, the lower hydrocarbon is subjected to the reaction in an coexistent gas comprising low concentration of oxidizing gas, reducing gas or a mixture thereof. The precursor of functional nanocarbon produced on the catalyst and amorphous carbon secondarily produced on the catalyst react with the coexistent gas so that being removed from the catalyst, making it possible to prevent the drop of conversion with time on stream due to the inhibition of the reaction by the precursor and by-product. In the case where the raw material of lower hydrocarbon is biogas, the coexistent gas can be easily contained in methane by lowering purification degree of methane.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: August 3, 2010
    Assignees: The Japan Steel Works, Ltd., National University Corporation Kitami Institute of Technology, Kajima Corporation
    Inventors: Akio Tada, Satoru Nakamura, Hideaki Ito, Yoshitaka Togo, Kikuo Koseki, Hiroyuki Takasuna
  • Publication number: 20090074634
    Abstract: A cylindrical screw feeder main body, catalyst feeding portions for introducing a catalyst into the screw feeder main body, low hydrocarbon feeding portions for introducing a low hydrocarbon into the screw feeder main body as a raw material, a screw for conveying the catalyst and nanocarbon produced by pyrolysis of the low hydrocarbon in the feeder main body, a solid matter discharging portion for discharging the catalyst and the nanocarbon conveyed by the screw out of the screw feeder main body and a gas discharging portion for discharging the unreacted low hydrocarbon and hydrogen produced by the pyrolysis of the low hydrocarbon out of the screw feeder main body are provided. Nanocarbon grown with the catalyst as top with time is continuously discharged out of the screw feeder main body while unused catalyst is being fed thereto at the same amount as that of nanocarbon, allowing efficient continuous reaction.
    Type: Application
    Filed: November 3, 2008
    Publication date: March 19, 2009
    Applicants: NATIONAL UNIVERSITY CORPORATION KITAMI INSTITUTE OF TECHNOLOGY, THE JAPAN STEEL WORKS, LTD., KAJIMA CORPORATION
    Inventors: Akio Tada, Satoru Nakamura, Tetsunari Nakamura, Hajime Kakihara, Yoshitaka Togo, Kikuo Koseki, Hiroyuki Takasuna
  • Publication number: 20060257310
    Abstract: In a reaction where a lower hydrocarbon is subjected to direct decomposition by using a catalyst to produce a functional nanocarbon and hydrogen, the lower hydrocarbon is subjected to the reaction in an coexistent gas comprising low concentration of oxidizing gas, reducing gas or a mixture thereof. The precursor of functional nanocarbon produced on the catalyst and amorphous carbon secondarily produced on the catalyst react with the coexistent gas so that being removed from the catalyst, making it possible to prevent the drop of conversion with time on stream due to the inhibition of the reaction by the precursor and by-product. In the case where the raw material of lower hydrocarbon is biogas, the coexistent gas can be easily contained in methane by lowering purification degree of methane. Further, hydrogen can be obtained as one of decomposition products of lower hydrocarbon thus can be contained in methane during the reaction.
    Type: Application
    Filed: March 29, 2006
    Publication date: November 16, 2006
    Inventors: Akio Tada, Satoru Nakamura, Hideaki Ito, Yoshitaka Togo, Kikuo Koseki, Hiroyuki Takasuna
  • Publication number: 20060228286
    Abstract: A cylindrical screw feeder main body, catalyst feeding portions for introducing a catalyst into the screw feeder main body, low hydrocarbon feeding portions for introducing a low hydrocarbon into the screw feeder main body as a raw material, a screw for conveying the catalyst and nanocarbon produced by pyrolysis of the low hydrocarbon in the feeder main body, a solid matter discharging portion for discharging the catalyst and the nanocarbon conveyed by the screw out of the screw feeder main body and a gas discharging portion for discharging the unreacted low hydrocarbon and hydrogen produced by the pyrolysis of the low hydrocarbon out of the screw feeder main body are provided. Nanocarbon grown with the catalyst as top with time is continuously discharged out of the screw feeder main body while unused catalyst is being fed thereto at the same amount as that of nanocarbon, allowing efficient continuous reaction.
    Type: Application
    Filed: March 20, 2006
    Publication date: October 12, 2006
    Inventors: Akio Tada, Satoru Nakamura, Tetsunari Nakamura, Hajime Kakihara, Yoshitaka Togo, Kikuo Koseki, Hiroyuki Takasuna
  • Patent number: 4050730
    Abstract: A latching device includes a bracket provided below the hanger of a hook, a latching arm pivoted to the bracket for opening and closing the opening in the curved portion of the hook, and a locking lever provided in the interior of the latching arm. When the latching arm closes the opening of the curved portion, a cap formed on the tip of the arm is engaged with the tip of the curved portion. A pawl formed on the tip of locking lever is adapted to lock the latching arm in the respective positions occupied by the latching arm when the latching arm opens or closes the opening of the curved portion by being engaged with upper or lower recess formed in the front side of the bracket.
    Type: Grant
    Filed: May 19, 1976
    Date of Patent: September 27, 1977
    Inventors: Akio Tada, Hideyuki Torihata