Patents by Inventor Akira Komoriya

Akira Komoriya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200109403
    Abstract: This invention provides a method for the in vivo delivery of oligonucleotides. The invention utilizes the presence of one or plurality of HES linked to an oligonucleotide to deliver a nucleic acid sequence of interest into the cytoplasm of cells and tissues of live organisms. The delivery vehicle is nontoxic to cells and organisms. Since delivery is sequence-independent and crosses membranes in a receptor-independent manner, the delivered oligonucleotide can target complementary sequences in the cytoplasm as well as in the nucleus of live cells. Sequences of bacterial or viral origin can also be targeted. The method can be used for delivery of genes coding for expression of specific proteins, antisense oligonucleotides, siRNAs, shRNAs, Dicer substrates, miRNAs, anti-miRNAs or any nucleic acid sequence in a living organism. The latter include mammals, plants, and microorganisms such as bacteria, protozoa, and viruses.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 9, 2020
    Inventors: Beverly PACKARD, Akira Komoriya
  • Patent number: 10557136
    Abstract: This invention provides a method for the in vivo delivery of oligonucleotides. The invention utilizes the presence of one or plurality of HES linked to an oligonucleotide to deliver a nucleic acid sequence of interest into the cytoplasm of cells and tissues of live organisms. The delivery vehicle is nontoxic to cells and organisms. Since delivery is sequence-independent and crosses membranes in a receptor-independent manner, the delivered oligonucleotide can target complementary sequences in the cytoplasm as well as in the nucleus of live cells. Sequences of bacterial or viral origin can also be targeted. The method can be used for delivery of genes coding for expression of specific proteins, antisense oligonucleotides, siRNAs, shRNAs, Dicer substrates, miRNAs, anti-miRNAs or any nucleic acid sequence in a living organism. The latter include mammals, plants, and microorganisms such as bacteria, protozoa, and viruses.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: February 11, 2020
    Assignee: Oncolmmunin Inc.
    Inventors: Beverly Packard, Akira Komoriya
  • Publication number: 20190183918
    Abstract: This invention provides a method for the systemic in vivo delivery of oligonucleotides. The invention utilizes the presence of one or plurality of HES linked to an oligonucleotide to deliver a nucleic acid sequence of interest into the cytoplasm of cells and tissues of live organisms. The delivery vehicle is nontoxic to cells and organisms. Since delivery is sequence-independent and crosses membranes in a receptor-independent manner, the delivered oligonucleotide can target complementary sequences in the cytoplasm as well as in the nucleus of live cells. Sequences of bacterial or viral origin can also be targeted. The method can be used for delivery of genes coding for expression of specific proteins, antisense oligonucleotides, siRNAs, shRNAs, Dicer substrates, miRNAs, anti-miRNAs or any nucleic acid sequence in a living organism. The latter include mammals, plants, and microorganisms such as bacteria, protozoa, and viruses.
    Type: Application
    Filed: October 29, 2018
    Publication date: June 20, 2019
    Inventors: Beverly Packard, Akira Komoriya
  • Publication number: 20160367587
    Abstract: This invention provides a method for the systemic in vivo delivery of oligonucleotides. The invention utilizes the presence of one or plurality of HES linked to an oligonucleotide to deliver a nucleic acid sequence of interest into the cytoplasm of cells and tissues of live organisms. The delivery vehicle is nontoxic to cells and organisms. Since delivery is sequence-independent and crosses membranes in a receptor-independent manner, the delivered oligonucleotide can target complementary sequences in the cytoplasm as well as in the nucleus of live cells. Sequences of bacterial or viral origin can also be targeted. The method can be used for delivery of genes coding for expression of specific proteins, antisense oligonucleotides, siRNAs, shRNAs, Dicer substrates, miRNAs, anti-miRNAs or any nucleic acid sequence in a living organism. The latter include mammals, plants, and microorganisms such as bacteria, protozoa, and viruses.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 22, 2016
    Applicant: OncoImmunin, Inc.
    Inventors: Beverly PACKARD, Akira KOMORIYA
  • Publication number: 20160040161
    Abstract: This invention provides a method for the in vivo delivery of oligonucleotides. The invention utilizes the presence of one or plurality of HES linked to an oligonucleotide to deliver a nucleic acid sequence of interest into the cytoplasm of cells and tissues of live organisms. The delivery vehicle is nontoxic to cells and organisms. Since delivery is sequence-independent and crosses membranes in a receptor-independent manner, the delivered oligonucleotide can target complementary sequences in the cytoplasm as well as in the nucleus of live cells. Sequences of bacterial or viral origin can also be targeted. The method can be used for delivery of genes coding for expression of specific proteins, antisense oligonucleotides, siRNAs, shRNAs, Dicer substrates, miRNAs, anti-miRNAs or any nucleic acid sequence in a living organism. The latter include mammals, plants, and microorganisms such as bacteria, protozoa, and viruses.
    Type: Application
    Filed: December 12, 2012
    Publication date: February 11, 2016
    Applicant: OncoImmunin Inc.
    Inventors: Beverly PACKARD, Akira KOMORIYA
  • Patent number: 7927871
    Abstract: This invention provides a non-radioactive assay to monitor and quantify the target-cell killing activities mediated by cytotoxic T lymphocytes (CTLs). This assay is predicated on the discovery that apoptosis pathway activation and, in particular, granzyme B activity, provides a measure of cytotoxic effector cell activity. In one embodiment, measurement of CTL-induced granzyme B activation in target cells is achieved through detection of the specific cleavage of fluorogenic granzyme B substrates. This assay reliably detects antigen-specific CTL killing of target cells, and provides a more sensitive, more informative and safer alternative to the standard 51Cr-release assay most often used to quantify CTL responses. The assay can be used to study CTL-mediated killing of primary host target cells of different cell lineages, and enables the study of antigen-specific cellular immune responses in real time at the single-cell level.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: April 19, 2011
    Assignee: Oncoimmunin, Inc.
    Inventors: Beverly Packard, Akira Komoriya
  • Patent number: 7879574
    Abstract: The present invention provides for novel reagents whose fluorescence increases in the presence of particular proteases. The reagents comprise a characteristically folded peptide backbone conjugated to two fluorophores such that the fluorophores are located opposite sides of a cleavage site. When the folded peptide is cleaved, as by digestion with a protease, the fluorophores provide a high intensity fluorescent signal at a visible wavelength. Because of their high specificity and their high fluorescence signal in the visible wavelengths, these protease indicators are particularly well suited for detection of protease activity in biological samples, in particular in frozen tissue sections. Thus this invention also provides for methods of detecting protease activity in situ in frozen sections.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: February 1, 2011
    Assignee: Oncoimmunin, Inc.
    Inventors: Beverly S. Packard, Akira Komoriya
  • Publication number: 20090325168
    Abstract: The present invention provides for novel reagents whose fluorescence changes upon cleavage or a change in conformation of a backbone. The reagents comprise a backbone (e.g. nucleic acid, polypeptide, etc.) joining two fluorophores of the same species whereby the fluorophores form an H-dimer resulting in quenching of the fluorescence of the fluorophores. When the backbone is cleaved or changes conformation, the fluorophores are separated, no longer forming an H-type dimer, and are de-quenched thereby providing a detectable signal. The use of a single fluorophore rather than an “acceptor-donor” fluoresecence resonance energy transfer system offers synthesis and performance advantages.
    Type: Application
    Filed: April 10, 2009
    Publication date: December 31, 2009
    Applicant: ONCOIMMUNIN, INC.
    Inventors: Beverly S. Packard, Akira Komoriya
  • Publication number: 20090263830
    Abstract: This invention provides a non-radioactive assay to monitor and quantify the target-cell killing activities mediated by cytotoxic T lymphocytes (CTLs). This assay is predicated on the discovery that apoptosis pathway activation and, in particular, caspase activity, provides a measure of cytotoxic effector cell activity. In one embodiment, measurement of CTL-induced caspase activation in target cells is achieved through detection of the specific cleavage of fluorogenic caspase substrates. This assay reliably detects antigen-specific CTL killing of target cells, and provides a more sensitive, more informative and safer alternative to the standard 51Cr-release assay most often used to quantify CTL responses. The assay can be used to study CTL-mediated killing of primary host target cells of different cell lineages, and enables the study of antigen-specific cellular immune responses in real time at the single-cell level.
    Type: Application
    Filed: March 3, 2009
    Publication date: October 22, 2009
    Applicant: Oncoimmunin, Inc.
    Inventors: BEVERLY PACKARD, MARTIN J. BROWN, MARK FEINBERG, LUZHENG LIU, GUIDO SILVESTRI, ANN CHAHROUDI, AKIRA KOMORIYA
  • Patent number: 7541143
    Abstract: The present invention provides for novel reagents whose fluorescence changes upon cleavage or a change in conformation of a backbone. The reagents comprise a backbone (e.g. nucleic acid, polypeptide, etc.) joining two fluorophores of the same species whereby the fluorophores form an H-dimer resulting in quenching of the fluorescence of the fluorophores. When the backbone is cleaved or changes conformation, the fluorophores are separated, no longer forming an H-type dimer, and are de-quenched thereby providing a detectable signal. The use of a single fluorophore rather than an “acceptor-donor” fluoresecence resonance energy transfer system offers synthesis and performance advantages.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: June 2, 2009
    Assignee: OnCoimmunin, Inc.
    Inventors: Beverly Packard, Akira Komoriya
  • Publication number: 20080199898
    Abstract: The present invention provides for novel reagents whose fluorescence increases in the presence of particular proteases. The reagents comprise a characteristically folded peptide backbone conjugated to two fluorophores such that the fluorophores are located opposite sides of a cleavage site. When the folded peptide is cleaved, as by digestion with a protease, the fluorophores provide a high intensity fluorescent signal at a visible wavelength. Because of their high specificity and their high fluorescence signal in the visible wavelengths, these protease indicators are particularly well suited for detection of protease activity in biological samples, in particular in frozen tissue sections. Thus this invention also provides for methods of detecting protease activity in situ in frozen sections.
    Type: Application
    Filed: November 16, 2007
    Publication date: August 21, 2008
    Applicant: ONCOIMMUNIN, INC.
    Inventors: Beverly S. Packard, Akira Komoriya
  • Patent number: 7312302
    Abstract: The present invention provides for novel reagents whose fluorescence increases in the presence of particular proteases. The reagents comprise a characteristically folded peptide backbone conjugated to two fluorophores such that the fluorophores are located opposite sides of a cleavage site. When the folded peptide is cleaved, as by digestion with a protease, the fluorophores provide a high intensity fluorescent signal at a visible wavelength. Because of their high specificity and their high fluorescence signal in the visible wavelengths, these protease indicators are particularly well suited for detection of protease activity in biological samples, in particular in frozen tissue sections. Thus this invention also provides for methods of detecting protease activity in situ in frozen sections.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: December 25, 2007
    Assignee: Oncolmmunin, Inc.
    Inventors: Beverly S. Packard, Akira Komoriya
  • Publication number: 20070184493
    Abstract: This invention provides a non-radioactive assay to monitor and quantify the target-cell killing activities mediated by cytotoxic T lymphocytes (CTLs). This assay is predicated on the discovery that apoptosis pathway activation and, in particular, granzyme B activity, provides a measure of cytotoxic effector cell activity. In one embodiment, measurement of CTL-induced granzyme B activation in target cells is achieved through detection of the specific cleavage of fluorogenic granzyme B substrates. This assay reliably detects antigen-specific CTL killing of target cells, and provides a more sensitive, more informative and safer alternative to the standard 51Cr-release assay most often used to quantify CTL responses. The assay can be used to study CTL-mediated killing of primary host target cells of different cell lineages, and enables the study of antigen-specific cellular immune responses in real time at the single-cell level.
    Type: Application
    Filed: January 30, 2007
    Publication date: August 9, 2007
    Applicant: ONCOIMMUNIN
    Inventors: Beverly Packard, Akira Komoriya
  • Patent number: 6936687
    Abstract: The present invention provides for novel reagents whose fluorescence increases in the presence of particular proteases. The reagents comprise a characteristically folded peptide backbone each end of which is conjugated to a fluorophore. When the folded peptide is cleaved, as by digestion with a protease, the fluorophores provide a high intensity fluorescent signal at a visible wavelength. Because of their high fluorescence signal in the visible wavelengths, these protease indicators are particularly well suited for detection of protease activity in biological samples, in particular in frozen tissue sections. Thus this invention also provides for methods of detecting protease activity in situ in frozen sections.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: August 30, 2005
    Assignee: Onco Immunin, Inc.
    Inventors: Akira Komoriya, Beverly S. Packard
  • Publication number: 20050158766
    Abstract: The present invention provides for novel reagents whose fluorescence changes upon cleavage or a change in conformation of a backbone. The reagents comprise a backbone (e.g. nucleic acid, polypeptide, etc.) joining two fluorophores of the same species whereby the fluorophores form an H-dimer resulting in quenching of the fluorescence of the fluorophores. When the backbone is cleaved or changes conformation, the fluorophores are separated, no longer forming an H-type dimer, and are de-quenched thereby providing a detectable signal. The use of a single fluorophore rather than an “acceptor-donor” fluoresecence resonance energy transfer system offers synthesis and performance advantages.
    Type: Application
    Filed: December 15, 2004
    Publication date: July 21, 2005
    Inventors: Beverly Packard, Akira Komoriya
  • Patent number: 6893868
    Abstract: The present invention provides for novel reagents whose fluorescence changes upon cleavage or a change in conformation of a backbone. The reagents comprise a backbone (e.g. nucleic acid, polypeptide, etc.) joining two fluorophores of the same species whereby the fluorophores form an H-dimer resulting in quenching of the fluorescence of the fluorophores. When the backbone is cleaved or changes conformation, the fluorophores are separated, no longer forming an H-type dimer, and are de-quenched thereby providing a detectable signal. The use of a single fluorophore rather than an “acceptor-donor” fluoresecence resonance energy transfer system offers synthesis and performance advantages.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: May 17, 2005
    Assignee: Onco Immunin, Inc.
    Inventors: Beverly Packard, Akira Komoriya
  • Publication number: 20040096926
    Abstract: The present invention provides for novel reagents whose fluorescence increases in the presence of particular proteases. The reagents comprise a characteristically folded peptide backbone conjugated to two fluorophores such that the fluorophores are located opposite sides of a cleavage site. When the folded peptide is cleaved, as by digestion with a protease, the fluorophores provide a high intensity fluorescent signal at a visible wavelength. Because of their high specificity and their high fluorescence signal in the visible wavelengths, these protease indicators are particularly well suited for detection of protease activity in biological samples, in particular in frozen tissue sections. Thus this invention also provides for methods of detecting protease activity in situ in frozen sections.
    Type: Application
    Filed: June 4, 2001
    Publication date: May 20, 2004
    Applicant: OncoImmunin, Inc.
    Inventors: Beverly S. Packard, Akira Komoriya
  • Publication number: 20030211548
    Abstract: This invention provides a non-radioactive assay to monitor and quantify the target-cell killing activities mediated by cytotoxic T lymphocytes (CTLs). This assay is predicated on the discovery that apoptosis pathway activation and, in particular, caspase activity, provides a measure of cytotoxic effector cell activity. In one embodiment, measurement of CTL-induced caspase activation in target cells is achieved through detection of the specific cleavage of fluorogenic caspase substrates. This assay reliably detects antigen-specific CTL killing of target cells, and provides a more sensitive, more informative and safer alternative to the standard 51Cr-release assay most often used to quantify CTL responses. The assay can be used to study CTL-mediated killing of primary host target cells of different cell lineages, and enables the study of antigen-specific cellular immune responses in real time at the single-cell level.
    Type: Application
    Filed: January 28, 2003
    Publication date: November 13, 2003
    Applicant: Oncolmmunin, Inc.
    Inventors: Beverly Packard, Martin J. Brown, Mark Feinberg, Luzheng Liu, Guido Silvestri, Ann Chahroudi, Akira Komoriya
  • Publication number: 20030207264
    Abstract: The present invention provides for novel reagents whose fluorescence changes upon cleavage or a change in conformation of a backbone. The reagents comprise a backbone (e.g. nucleic acid, polypeptide, etc.) joining two fluorophores of the same species whereby the fluorophores form an H-dimer resulting in quenching of the fluorescence of the fluorophores. When the backbone is cleaved or changes conformation, the fluorophores are separated, no longer forming an H-type dimer, and are de-quenched thereby providing a detectable signal. The use of a single fluorophore rather than an “acceptor-donor” fluoresecence resonance energy transfer system offers synthesis and performance advantages.
    Type: Application
    Filed: December 22, 2000
    Publication date: November 6, 2003
    Inventors: Beverly Packard, Akira Komoriya
  • Patent number: 6037137
    Abstract: The present invention provides for novel reagents whose fluorescence increases in the presence of particular proteases. The reagents comprise a characteristically folded peptide backbone each end of which is conjugated to a fluorophore. When the folded peptide is cleaved, as by digestion with a protease, the fluorophores provide a high intensity fluorescent signal at a visible wavelength. Because of their high fluorescence signal in the visible wavelengths, these protease indicators are particularly well suited for detection of protease activity in biological samples, in particular in frozen tissue sections. Thus this invention also provides for methods of detecting protease activity in situ in frozen sections.
    Type: Grant
    Filed: February 20, 1997
    Date of Patent: March 14, 2000
    Assignee: Oncoimmunin, Inc.
    Inventors: Akira Komoriya, Beverly S. Packard