Patents by Inventor Akram A. Salman

Akram A. Salman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8704271
    Abstract: A bidirectional electrostatic discharge (ESD) protection device includes a substrate having a topside semiconductor surface that includes a first silicon controlled rectifier (SCR) and a second SCR formed therein including a patterned p-buried layer (PBL) including a plurality of PBL regions. The first SCR includes a first and second n-channel remote drain MOS device each having a gate, a source within a p-body, and sharing a first merged drain. The second SCR includes a third and a fourth n-channel remote drain MOS device each having a gate, a source within a p-body, and sharing a second merged drain. The plurality of PBL regions are directly under at least a portion of the sources while being excluded from being directly under either of the merged drains.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: April 22, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Henry Litzmann Edwards, Akram A. Salman
  • Publication number: 20140106524
    Abstract: An integrated circuit contains a voltage protection structure having a diode isolated DENMOS transistor with a guard element proximate to the diode and the DENMOS transistor. The guard element includes an active area coupled to ground. The diode anode is connected to an I/O pad. The diode cathode is connected to the DENMOS drain. The DENMOS source is grounded. A process of forming the integrated circuit is also disclosed.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 17, 2014
    Inventors: Farzan Farbiz, Akram A. Salman
  • Publication number: 20140087530
    Abstract: An integrated circuit containing a field controlled diode which includes a p-type channel region between an upper gate and a lower n-type depletion gate, a p-type anode in a p-type anode well abutting the channel region, and an n-type cathode in a p-type anode well abutting the channel region opposite from the anode well. An n-type lower gate link connects the lower gate to the surface of the substrate. A surface control element is located at the surface of the channel region between the cathode and the upper gate. A process of forming the integrated circuit containing the field controlled diode is described.
    Type: Application
    Filed: December 8, 2013
    Publication date: March 27, 2014
    Inventor: Akram A. Salman
  • Publication number: 20140054642
    Abstract: An integrated circuit includes an NMOS SCR in which a p-type body well of the NMOS transistor provides a base layer for a vertical NPN layer stack. The base layer is formed by implanting p-type dopants using an implant mask which has a cutout mask element over the base area, so as to block the p-type dopants from the base area. The base layer is implanted concurrently with p-type body wells under NMOS transistors in logic components in the integrated circuit. Subsequent anneals cause the p-type dopants to diffuse into the base area, forming a base with a lower doping density that adjacent regions of the body well of the NMOS transistor in the NMOS SCR. The NMOS SCR may have a symmetric transistor, a drain extended transistor, or may be a bidirectional NMOS SCR with a symmetric transistor integrated with a drain extended transistor.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Henry Litzmann EDWARDS, Akram A. SALMAN
  • Patent number: 8633541
    Abstract: An integrated circuit contains a voltage protection structure having a diode isolated DENMOS transistor with a guard element proximate to the diode and the DENMOS transistor. The guard element includes an active area coupled to ground. The diode anode is connected to an I/O pad. The diode cathode is connected to the DENMOS drain. The DENMOS source is grounded. A process of forming the integrated circuit is also disclosed.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: January 21, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Farzan Farbiz, Akram A. Salman
  • Patent number: 8610183
    Abstract: An integrated circuit containing a field controlled diode which includes a p-type channel region between an upper gate and a lower n-type depletion gate, a p-type anode in a p-type anode well abutting the channel region, and an n-type cathode in a p-type anode well abutting the channel region opposite from the anode well. An n-type lower gate link connects the lower gate to the surface of the substrate. A surface control element is located at the surface of the channel region between the cathode and the upper gate. A process of forming the integrated circuit containing the field controlled diode is described.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: December 17, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Akram A. Salman
  • Publication number: 20130320396
    Abstract: An integrated circuit includes a bidirectional ESD device which has a plurality of parallel switch legs. Each switch leg includes a first current switch and a second current switch in a back-to-back configuration. A first current supply node of each first current switch is coupled to a first terminal of the ESD device. A second current supply node of each second current switch is coupled to a second terminal of the ESD device. A first current collection node of each first current switch is coupled to a second current collection node of the corresponding second current switch. The first current collection nodes in each first current switch is not coupled to any other first current collection node, and similarly, the second current collection node in each instance second current switch is not coupled to any other second current collection node.
    Type: Application
    Filed: May 24, 2013
    Publication date: December 5, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: Akram A. SALMAN, Farzan FARBIZ, Ann Margaret CONCANNON, Gianluca BOSELLI
  • Publication number: 20130285113
    Abstract: A bidirectional electrostatic discharge (ESD) protection device includes a substrate having a topside semiconductor surface that includes a first silicon controlled rectifier (SCR) and a second SCR formed therein including a patterned p-buried layer (PBL) including a plurality of PBL regions. The first SCR includes a first and second n-channel remote drain MOS device each having a gate, a source within a p-body, and sharing a first merged drain. The second SCR includes a third and a fourth n-channel remote drain MOS device each having a gate, a source within a p-body, and sharing a second merged drain. The plurality of PBL regions are directly under at least a portion of the sources while being excluded from being directly under either of the merged drains.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: HENRY LITZMANN EDWARDS, AKRAM A. SALMAN
  • Publication number: 20130264640
    Abstract: A method of forming a drain extended metal-oxide-semiconductor (MOS) transistor includes forming a gate structure including a gate electrode on a gate dielectric on a semiconductor surface portion of a substrate. The semiconductor surface portion has a first doping type. A source is formed on one side of the gate structure having a second doping type. A drain is formed including a highly doped portion on another side of the gate structure having the second doping type. A masking layer is formed on a first portion of a surface area of the highly doped drain portion. A second portion of the surface area of the highly doped drain portion does not have the masking layer. Selectively siliciding is used to form silicide on the second portion. The masking layer blocks siliciding on the first portion so that the first portion is silicide-free.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 10, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: AKRAM A. SALMAN, FARZAN FARBIZ, ARAVIND C. APPASWAMY, JOHN ERIC KUNZ, JR., GIANLUCA BOSELLI
  • Publication number: 20130193491
    Abstract: An integrated circuit containing a field controlled diode which includes a p-type channel region between an upper gate and a lower n-type depletion gate, a p-type anode in a p-type anode well abutting the channel region, and an n-type cathode in a p-type anode well abutting the channel region opposite from the anode well. An n-type lower gate link connects the lower gate to the surface of the substrate. A surface control element is located at the surface of the channel region between the cathode and the upper gate. A process of forming the integrated circuit containing the field controlled diode is described.
    Type: Application
    Filed: August 1, 2012
    Publication date: August 1, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Akram A. Salman
  • Patent number: 8310011
    Abstract: An electrostatic discharge protection device and methodology are provided for protecting semiconductor devices against electrostatic discharge events by temporarily forming during normal (non-ESD) operation two more inversion layers (112, 113) in a first well region (104) that is disposed between anode and cathode regions (105, 106) in response to one or more bias voltages (G1, G2) that are close to Vdd in order to reduce leakage current and capacitance during normal operation (non-ESD) condition. During an electrostatic discharge event, the bias voltages can be removed (e.g., decoupled or set to 0V) to eliminate the inversion layers, thereby forming a semiconductor resistor for shunting the ESD current.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: November 13, 2012
    Assignee: GlobalFoundries Inc.
    Inventors: Akram A. Salman, Stephen G. Beebe, Shuqing Cao
  • Publication number: 20120161232
    Abstract: An integrated circuit contains a voltage protection structure having a diode isolated DENMOS transistor with a guard element proximate to the diode and the DENMOS transistor. The guard element includes an active area coupled to ground. The diode anode is connected to an I/O pad. The diode cathode is connected to the DENMOS drain. The DENMOS source is grounded. A process of forming the integrated circuit is also disclosed.
    Type: Application
    Filed: December 28, 2011
    Publication date: June 28, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Farzan Farbiz, Akram Salman
  • Publication number: 20120003818
    Abstract: An electrostatic discharge protection device and methodology are provided for protecting semiconductor devices against electrostatic discharge events by temporarily forming during normal (non-ESD) operation two more inversion layers (112, 113) in a first well region (104) that is disposed between anode and cathode regions (105, 106) in response to one or more bias voltages (G1, G2) that are close to Vdd in order to reduce leakage current and capacitance during normal operation (non-ESD) condition. During an electrostatic discharge event, the bias voltages can be removed (e.g., decoupled or set to 0V) to eliminate the inversion layers, thereby forming a semiconductor resistor for shunting the ESD current.
    Type: Application
    Filed: August 12, 2011
    Publication date: January 5, 2012
    Inventors: Akram A. Salman, Stephen G. Beebe, Shuqing Cao
  • Patent number: 8018002
    Abstract: An electrostatic discharge protection device and methodology are provided for protecting semiconductor devices against electrostatic discharge events by temporarily forming during normal (non-ESD) operation two more inversion layers (112, 113) in a first well region (104) that is disposed between anode and cathode regions (105, 106) in response to one or more bias voltages (G1, G2) that are close to Vdd in order to reduce leakage current and capacitance during normal operation (non-ESD) condition. During an electrostatic discharge event, the bias voltages can be removed (e.g., decoupled or set to 0V) to eliminate the inversion layers, thereby forming a semiconductor resistor for shunting the ESD current.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: September 13, 2011
    Assignee: GlobalFoundries Inc.
    Inventors: Akram A. Salman, Stephen G. Beebe, Shuqing Cao
  • Patent number: 8013393
    Abstract: A method for fabricating a semiconductor device is provided. According to this method, a first gate electrode and a second gate electrode are formed overlying a first portion of a silicon substrate, and ions of a first conductivity-type are implanted into a second portion of the silicon substrate to define a first conductivity-type diode region within the silicon substrate. Ions of a second conductivity-type are implanted into a third portion of the silicon substrate to define a second conductivity-type diode region within the silicon substrate. During one of the steps of implanting ions of the first conductivity-type and implanting ions of the second conductivity-type, ions are also implanted into at least part of the first portion to define a separation region within the first portion. The separation region splits the first portion into a first well device region and a second well device region. The separation region is formed in series between the first well device region and the second well device region.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: September 6, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Akram Salman, Stephen Beebe
  • Publication number: 20100328826
    Abstract: An electrostatic discharge protection device and methodology are provided for protecting semiconductor devices against electrostatic discharge events by temporarily forming during normal (non-ESD) operation two more inversion layers (112, 113) in a first well region (104) that is disposed between anode and cathode regions (105, 106) in response to one or more bias voltages (G1, G2) that are close to Vdd in order to reduce leakage current and capacitance during normal operation (non-ESD) condition. During an electrostatic discharge event, the bias voltages can be removed (e.g., decoupled or set to 0V) to eliminate the inversion layers, thereby forming a semiconductor resistor for shunting the ESD current.
    Type: Application
    Filed: June 24, 2009
    Publication date: December 30, 2010
    Inventors: Akram A. Salman, Stephen G. Beebe, Shuqing Cao
  • Patent number: 7791102
    Abstract: Methods and devices are provided for protecting semiconductor devices against electrostatic discharge events. An electrostatic discharge protection device comprises a silicon substrate, a P+-type anode region disposed within the silicon substrate, and an N-well device region disposed within the silicon substrate in series with the P+-type anode region. A first P-well device region is disposed within the silicon substrate in series with the first N-well device region and an N+-type cathode region is disposed within the silicon substrate. A gate electrode is disposed at least substantially overlying the first N-well and P-well device regions of the silicon substrate.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: September 7, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Akram Salman, Stephen Beebe
  • Patent number: 7609493
    Abstract: An electrostatic discharge (ESD) protection circuit and a method for reducing capacitance in the ESD protection circuit. A pair of gated diodes are connected in series, wherein the anode of one of the gated diodes is coupled to a lower voltage supply node and the cathode the other gated diode is connected to the upper voltage supply node. The commonly connected anode and cathode of the series connected gated diodes are connected to an input/output pad and to receiver and driver circuitry. The gates of the gated diodes are connected together. A gate biasing circuit is connected to the gates of the gated diodes. The gate biasing circuit applies a voltage to the gates of the gated diodes and depletes their channel regions of charge carriers, which lowers the capacitances of each gate diode.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: October 27, 2009
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Akram A. Salman, Stephen G. Beebe
  • Patent number: 7560777
    Abstract: An electrostatic discharge (“ESD”) protection circuit having dynamically configurable series-connected diodes and a method for manufacturing the ESD protection circuit. A doped region of P-type conductivity and a doped region of N-type conductivity are formed in an SOI layer of P-type conductivity, wherein the doped regions are laterally spaced apart by a portion of the SOI layer. At least one gate structure is formed on the SOI region that is between the N-type and P-type doped regions. During normal operation, a portion of the SOI region that is adjacent to and between the P-type and N-type doped regions is biased so that it becomes a region of N-type conductivity, thereby forming two series-connected diodes. During an ESD event, the bias is changed so that the region between the P-type and N-type doped regions becomes a region of P-type conductivity, thereby forming a single P-N junction diode.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: July 14, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Akram A. Salman, Stephen G. Beebe
  • Publication number: 20090001472
    Abstract: A method for fabricating a semiconductor device is provided. According to this method, a first gate electrode and a second gate electrode are formed overlying a first portion of a silicon substrate, and ions of a first conductivity-type are implanted into a second portion of the silicon substrate to define a first conductivity-type diode region within the silicon substrate. Ions of a second conductivity-type are implanted into a third portion of the silicon substrate to define a second conductivity-type diode region within the silicon substrate. During one of the steps of implanting ions of the first conductivity-type and implanting ions of the second conductivity-type, ions are also implanted into at least part of the first portion to define a separation region within the first portion. The separation region splits the first portion into a first well device region and a second well device region. The separation region is formed in series between the first well device region and the second well device region.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Akram Salman, Stephen Beebe