Patents by Inventor Alan C. Rogers

Alan C. Rogers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240120881
    Abstract: A clock device including: an LC network comprising: a first inductive portion; a second inductive portion connected to the first inductive portion; a third inductive portion connected to the second inductive portion; a first capacitive portion connected to the first, the second, and the third inductive portions; and a second capacitive portion connected to the first inductive portion and the third inductive portion, wherein the LC network is configured to simultaneously resonate at a first frequency and a second frequency that is substantially three times the first frequency, and wherein the clock signal is provided between the first and the third inductive portions by combining a first signal component and a second signal component that is a third harmonic of the first signal component and each inflection point of the first signal component is phase aligned with a corresponding inflection point of the second signal component.
    Type: Application
    Filed: November 13, 2023
    Publication date: April 11, 2024
    Inventors: Michael A. Ang, Alan C. Rogers
  • Publication number: 20240113923
    Abstract: A mixed signal receiver includes a first sample and hold (S/H) circuit having a first S/H input terminal to receive an analog input signal and a first S/H output terminal directly coupled to a first common node; a first data slicer having a first slicer input terminal coupled to the first common node; and a first data-driven charge coupling digital-to-analog converter (DAC) including: (i) a DAC input terminal to receive a first digital signal from a first digital output of the first data slicer, (ii) a DAC output terminal directly coupled to the first common node, (iii) a plurality of capacitor modules configured to be pre-charged during a sample phase, and (iv) logic components, wherein when the logic components toggle a voltage on the plurality of capacitor modules, charge is capacitively coupled to or from the first common node during an immediately subsequent hold phase.
    Type: Application
    Filed: June 30, 2023
    Publication date: April 4, 2024
    Inventors: Michael A. Ang, Alan C. Rogers
  • Patent number: 11947371
    Abstract: A mixed-signal integrated circuit (IC), including: a voltage booster that includes one or more charge pump devices configured to receive an input voltage, an oscillator signal, and a control signal, wherein the one or more charge pump devices comprise a network of capacitors switchable to provide a charged pumped in response to the control signal, and wherein the one or more charge pump devices, using the pumped, generate a boosted voltage based on the input voltage and at least a portion of an amplitude of the oscillator signal, a voltage regulator coupled to the one or more charge pump devices and configured to receive the boosted voltage and generate a regulated boosted voltage based on the boosted voltage, and a control and monitoring engine configured to provide the control signal based on, at least in part, the input voltage, the oscillator signal, and the regulated boosted voltage.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: April 2, 2024
    Assignee: Analog Bits Inc.
    Inventor: Alan C. Rogers
  • Publication number: 20240044721
    Abstract: A temperature measuring circuit uses a diode to drain a switched capacitor at two different lengths of time. The capacitor's voltage is amplified, measured, and compared for each length of time to calculate a temperature. The circuitry may cancel out errors due to manufacturing tolerances and variations, as well as offset voltages, supply noise, substrate noise, and other issues. The process may charge a capacitor, then drain the capacitor with a diode for a first period of time, at which point, the diode is switched out of the circuit. The remaining charge in the diode may be amplified, then analyzed using an analog to digital converter. A second measurement may be taken with a different period of time, and the two measurements may be subtracted to yield an absolute temperature.
    Type: Application
    Filed: August 6, 2022
    Publication date: February 8, 2024
    Applicant: Analog Bits, Inc.
    Inventors: Mohammad Mahdi Ahmadi, Alan C. Rogers, Jitendrakumar B. Thummar
  • Patent number: 11817824
    Abstract: A clock device includes an LC network that has a first inductive portion; a second inductive portion connected to the first inductive portion; a third inductive portion connected to the second inductive portion; a first capacitive portion connected to the first, the second, and the third inductive portions; and a second capacitive portion connected to the first inductive portion and the third inductive portion, wherein the LC network is configured to simultaneously resonate at a first frequency and a second frequency that is substantially three times the first frequency, and wherein the clock signal is provided between the first and the third inductive portions by combining a first signal component and a second signal component that is a third harmonic of the first signal component and each inflection point of the first signal component is phase aligned with a corresponding inflection point of the second signal component.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: November 14, 2023
    Assignee: Analog Bits Inc.
    Inventors: Michael A. Ang, Alan C. Rogers
  • Patent number: 11729029
    Abstract: A mixed signal receiver includes a first sample and hold (S/H) circuit having a first S/H input terminal to receive an analog input signal and a first S/H output terminal directly coupled to a first common node; a first data slicer having a first slicer input terminal coupled to the first common node; and a first data-driven charge coupling digital-to-analog converter (DAC) including: (i) a DAC input terminal to receive a first digital signal from a first digital output of the first data slicer, (ii) a DAC output terminal directly coupled to the first common node, (iii) a plurality of capacitor modules configured to be pre-charged during a sample phase, and (iv) logic components, wherein when the logic components toggle a voltage on the plurality of capacitor modules, charge is capacitively coupled to or from the first common node during an immediately subsequent hold phase.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: August 15, 2023
    Assignee: Analog Bits Inc.
    Inventors: Michael A. Ang, Alan C. Rogers
  • Publication number: 20230246883
    Abstract: A high speed but power-efficient electronic communications protocol may comprise dual simplex links, each operating in a differential high-speed mode and each capable of a low-speed signaling mode. When both links operate in high speed mode, signaling is performed in-band, with signals embedded as metadata attached to transmitted packets. When one of the links is put into a low-power mode, the return-path signaling may be performed on the two wires previously used for high-speed transmissions. One wire may be used for flow control or other signaling, while the other wire may be used for a wake command, which may initiate the low-power mode to be elevated to a high-speed mode. Multiple lanes may be organized to operate in parallel for each link, allowing for a very high speed communications protocol that may be easily switched into and out of a low-power state without additional sideband wiring.
    Type: Application
    Filed: February 3, 2022
    Publication date: August 3, 2023
    Applicant: Analog Bits, Inc.
    Inventors: Alan C. Rogers, Michael A. Ang
  • Publication number: 20230127952
    Abstract: A variable capacitance circuit may operate a Metal Oxide Semiconductor (MOS) transistor or other semiconductor device to switch a capacitor in and out. Several circuits may be combined in a parallel network having offset bias voltages, such that the combined network may produce a variable capacitance over a large voltage range. The variable capacitance circuit may be incorporated into a phase locked loop (PLL) circuit where similar devices may be configured to produce a voltage reference as part of the PLL circuitry. Such a circuit may be immune to temperature, process, or voltage variances, since the current pulse magnitude times the low pass filter resistance times the sensitivity of a controlled voltage oscillator can be held constant.
    Type: Application
    Filed: December 23, 2022
    Publication date: April 27, 2023
    Applicant: Analog Bits, Inc.
    Inventors: Alan C. Rogers, Raghunand Bhagwan Iyengar
  • Publication number: 20230061840
    Abstract: A mixed signal receiver includes a first sample and hold (S/H) circuit having a first S/H input terminal to receive an analog input signal and a first S/H output terminal directly coupled to a first common node; a first data slicer having a first slicer input terminal coupled to the first common node; and a first data-driven charge coupling digital-to-analog converter (DAC) including: (i) a DAC input terminal to receive a first digital signal from a first digital output of the first data slicer, (ii) a DAC output terminal directly coupled to the first common node, (iii) a plurality of capacitor modules configured to be pre-charged during a sample phase, and (iv) logic components, wherein when the logic components toggle a voltage on the plurality of capacitor modules, charge is capacitively coupled to or from the first common node during an immediately subsequent hold phase.
    Type: Application
    Filed: November 12, 2021
    Publication date: March 2, 2023
    Inventors: Michael A. Ang, Alan C. Rogers
  • Patent number: 11569814
    Abstract: A variable capacitance circuit may operate a Metal Oxide Semiconductor (MOS) transistor or other semiconductor device to switch a capacitor in and out. Several circuits may be combined in a parallel network having offset bias voltages, such that the combined network may produce a variable capacitance over a large voltage range. The variable capacitance circuit may be incorporated into a phase locked loop (PLL) circuit where similar devices may be configured to produce a voltage reference as part of the PLL circuitry. Such a circuit may be immune to temperature, process, or voltage variances, since the current pulse magnitude times the low pass filter resistance times the sensitivity of a controlled voltage oscillator can be held constant.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: January 31, 2023
    Assignee: Analog Bits, Inc.
    Inventors: Alan C. Rogers, Raghunand Bhagwan Iyengar
  • Publication number: 20220374032
    Abstract: A mixed-signal integrated circuit (IC), including: a voltage booster that includes one or more charge pump devices configured to receive an input voltage, an oscillator signal, and a control signal, wherein the one or more charge pump devices comprise a network of capacitors switchable to provide a charged pumped in response to the control signal, and wherein the one or more charge pump devices, using the pumped, generate a boosted voltage based on the input voltage and at least a portion of an amplitude of the oscillator signal, a voltage regulator coupled to the one or more charge pump devices and configured to receive the boosted voltage and generate a regulated boosted voltage based on the boosted voltage, and a control and monitoring engine configured to provide the control signal based on, at least in part, the input voltage, the oscillator signal, and the regulated boosted voltage.
    Type: Application
    Filed: June 10, 2022
    Publication date: November 24, 2022
    Inventor: Alan C. Rogers
  • Patent number: 11360500
    Abstract: A mixed-signal integrated circuit (IC), including: a voltage booster that includes one or more charge pump devices configured to receive an input voltage, an oscillator signal, and a control signal, wherein the one or more charge pump devices comprise a network of capacitors switchable to provide a charged pumped in response to the control signal, and wherein the one or more charge pump devices, using the pumped, generate a boosted voltage based on the input voltage and at least a portion of an amplitude of the oscillator signal, a voltage regulator coupled to the one or more charge pump devices and configured to receive the boosted voltage and generate a regulated boosted voltage based on the boosted voltage, and a control and monitoring engine configured to provide the control signal based on, at least in part, the input voltage, the oscillator signal, and the regulated boosted voltage.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: June 14, 2022
    Assignee: Analog Bits Inc.
    Inventor: Alan C. Rogers
  • Patent number: 11211937
    Abstract: Implementations provide a phase locked loop (PLL) device that includes: a phase and frequency detector (PFD) and charge pump (CP) portion; a low pass filter; a voltage controlled oscillator (VCO) driven by the low pass filter to generate a VCO clock signal, multiple divider configured to receive the VCO clock signal and frequency divide the VCO clock signal in stages to generate a series statically divided VCO clock signals and a dynamically divided VCO clock signal; a feedback portion including a first component configured to receive the dynamically divided VCO clock signal and generate indicator signals; and a second component configured to multiplex from the indicator signals to generate the feedback clock signal set for the PFD and CP portion; and a master phase/frequency control engine configured to assert a division control over at least one divider and a multiplex control over the multiplex network.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: December 28, 2021
    Assignee: Analog Bits Inc.
    Inventors: Alan C. Rogers, Raghunand Bhagwan
  • Publication number: 20210397206
    Abstract: A mixed-signal integrated circuit (IC), including: a voltage booster that includes one or more charge pump devices configured to receive an input voltage, an oscillator signal, and a control signal, wherein the one or more charge pump devices comprise a network of capacitors switchable to provide a charged pumped in response to the control signal, and wherein the one or more charge pump devices, using the pumped, generate a boosted voltage based on the input voltage and at least a portion of an amplitude of the oscillator signal, a voltage regulator coupled to the one or more charge pump devices and configured to receive the boosted voltage and generate a regulated boosted voltage based on the boosted voltage, and a control and monitoring engine configured to provide the control signal based on, at least in part, the input voltage, the oscillator signal, and the regulated boosted voltage.
    Type: Application
    Filed: April 19, 2021
    Publication date: December 23, 2021
    Inventor: Alan C. Rogers
  • Publication number: 20210351963
    Abstract: Some implementations provide a passive equalizer section configured to filter an input signal, the passive equalizer section including: a first passive filter that comprises: a first resistor characterized by a first resistance, and a first reactive component characterized by a first reactance, wherein the first resistor and the first reactive component are in series and connected at a first connection node; and a second passive filter that comprises: a second resistor characterized by a second resistance, and a second reactive component characterized by a second reactance, wherein the second resistor and the second reactive component are in series and connected at a second connection node; and a signal mixing section comprising a plurality of transistors to mix signals with different frequency response characteristics.
    Type: Application
    Filed: March 4, 2021
    Publication date: November 11, 2021
    Inventors: Alan C. Rogers, Mohammad Mahdi Ahmadi
  • Patent number: 11115030
    Abstract: A charge pump includes: (I) a current source; (II) a p-channel source current network including: a first p-channel transistor; a second p-channel transistor; a p-channel current switch including at least one source terminal coupled to the drain terminal of the first p-channel transistor, at least one gate coupled to a phase comparator, and at least one drain terminal; a third p-channel transistor; and (III) a n-channel sink current network including: a first n-channel transistor; a second n-channel transistor; a third n-channel transistor; a n-channel current switch comprising at least one drain terminal coupled to the source terminal of the third n-channel transistor, at least one gate coupled to the phase comparator; and at least one source terminal coupled to the drain terminal of the first n-channel transistor; and wherein the p-channel source current network and the n-channel sink current network draw a baseline current from the first p-channel transistor.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: September 7, 2021
    Assignee: Analog Bits Inc.
    Inventors: Alan C. Rogers, Raghunand Bhagwan
  • Publication number: 20210175890
    Abstract: Implementations provide a phase locked loop (PLL) device that includes: a phase and frequency detector (PFD) and charge pump (CP) portion; a low pass filter; a voltage controlled oscillator (VCO) driven by the low pass filter to generate a VCO clock signal, multiple divider configured to receive the VCO clock signal and frequency divide the VCO clock signal in stages to generate a series statically divided VCO clock signals and a dynamically divided VCO clock signal; a feedback portion including a first component configured to receive the dynamically divided VCO clock signal and generate indicator signals; and a second component configured to multiplex from the indicator signals to generate the feedback clock signal set for the PFD and CP portion; and a master phase/frequency control engine configured to assert a division control over at least one divider and a multiplex control over the multiplex network.
    Type: Application
    Filed: October 5, 2020
    Publication date: June 10, 2021
    Inventors: Alan C. Rogers, Raghunand Bhagwan
  • Patent number: 10983543
    Abstract: A mixed-signal integrated circuit (IC), including: a voltage booster that includes one or more charge pump devices configured to receive an input voltage, an oscillator signal, and a control signal, wherein the one or more charge pump devices comprise a network of capacitors switchable to provide a charged pumped in response to the control signal, and wherein the one or more charge pump devices, using the pumped, generate a boosted voltage based on the input voltage and at least a portion of an amplitude of the oscillator signal, a voltage regulator coupled to the one or more charge pump devices and configured to receive the boosted voltage and generate a regulated boosted voltage based on the boosted voltage, and a control and monitoring engine configured to provide the control signal based on, at least in part, the input voltage, the oscillator signal, and the regulated boosted voltage.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: April 20, 2021
    Assignee: Analog Bits Inc.
    Inventor: Alan C. Rogers
  • Publication number: 20210075653
    Abstract: Some implementations provide a passive equalizer section configured to filter an input signal, the passive equalizer section including: a first passive filter that comprises: a first resistor characterized by a first resistance, and a first reactive component characterized by a first reactance, wherein the first resistor and the first reactive component are in series and connected at a first connection node; and a second passive filter that comprises: a second resistor characterized by a second resistance, and a second reactive component characterized by a second reactance, wherein the second resistor and the second reactive component are in series and connected at a second connection node; and a signal mixing section comprising a plurality of transistors to mix signals with different frequency response characteristics.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 11, 2021
    Inventors: Alan C. Rogers, Mohammad Mahdi Ahmadi
  • Patent number: 10944602
    Abstract: Some implementations provide a passive equalizer section configured to filter an input signal, the passive equalizer section including: a first passive filter that comprises: a first resistor characterized by a first resistance, and a first reactive component characterized by a first reactance, wherein the first resistor and the first reactive component are in series and connected at a first connection node; and a second passive filter that comprises: a second resistor characterized by a second resistance, and a second reactive component characterized by a second reactance, wherein the second resistor and the second reactive component are in series and connected at a second connection node; and a signal mixing section comprising a plurality of transistors to mix signals with different frequency response characteristics.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: March 9, 2021
    Assignee: Analog Bits Inc.
    Inventors: Alan C. Rogers, Mohammad Mahdi Ahmadi