Patents by Inventor Alan D. Kathman

Alan D. Kathman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220382017
    Abstract: Systems and methods according to one or more embodiments are provided for annealing a chalcogenide lens at an elevated temperature to accelerate release of internal stress within the chalcogenide lens caused during a molding process that formed the chalcogenide lens. In particular, the annealing process includes gradually heating the chalcogenide lens to a dwell temperature, maintaining the chalcogenide lens at the dwell temperature for a predetermined period of time, and gradually cooling the chalcogenide lens from the dwell temperature. The annealing process stabilizes the shape, the effective focal length, and/or the modulation transfer function of the chalcogenide lens. Associated optical assemblies and infrared imaging devices are also described.
    Type: Application
    Filed: August 12, 2022
    Publication date: December 1, 2022
    Inventors: Alan D. Kathman, William J. Hall, Erika Goransson, Todd E. Rixman, Bengt Jervmo, Bo Dahllof, Stefan Gustavsson, Leif Sommar, Olof Holmgren, Hans Ostling
  • Publication number: 20220326514
    Abstract: Various techniques are disclosed to provide for reducing undesired reflections in captured images. In one example, a system includes an optical element configured to pass radiation from a scene. The system also includes an imager configured to capture images in response to the scene radiation and reflect at least a portion of the scene radiation to the optical element. The optical element comprises a surface with a convex radius of curvature facing the imager and configured to receive and return the reflected radiation toward the imager in a distribution pattern to reduce a magnitude of the reflected radiation in the captured images. Additional methods, devices, and systems are also provided.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 13, 2022
    Inventors: Gregory Fitzgerald, Alan D. Kathman, David Ovrutsky
  • Patent number: 11415783
    Abstract: Systems and methods according to one or more embodiments are provided for annealing a chalcogenide lens at an elevated temperature to accelerate release of internal stress within the chalcogenide lens caused during a molding process that formed the chalcogenide lens. In particular, the annealing process includes gradually heating the chalcogenide lens to a dwell temperature, maintaining the chalcogenide lens at the dwell temperature for a predetermined period of time, and gradually cooling the chalcogenide lens from the dwell temperature. The annealing process stabilizes the shape, the effective focal length, and/or the modulation transfer function of the chalcogenide lens. Associated optical assemblies and infrared imaging devices are also described.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: August 16, 2022
    Assignee: Teledyne FLIR Commercial Systems, Inc.
    Inventors: Alan D. Kathman, William J. Hall, Erika Goransson, Todd E. Rixman, Bengt Jervmo, Bo Dahllof, Stefan Gustavsson, Leif Sommar, Olof Holmgren, Hans Ostling
  • Publication number: 20220221691
    Abstract: Aspect ratio modifying imaging systems and methods are provided. In one example, an infrared imaging device includes at least one lens element configured to transmit electromagnetic radiation associated with a portion of a scene. The portion has a first aspect ratio. The electromagnetic radiation includes mid-wave and/or long-wave infrared light. The at least one lens element has a freeform surface having no translational symmetry and no rotational symmetry. The infrared imaging device further includes a detector array configured to receive image data associated with the electromagnetic radiation from the at least one lens element and generate, based on the image data, an image. The image data has a second aspect ratio different from the first aspect ratio. Each of the first and second aspect ratios is a ratio of a size along a first direction and a size along a second direction orthogonal to the first direction.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 14, 2022
    Inventors: Michael D. Walters, Alan D. Kathman, David Ovrutsky
  • Patent number: 11063159
    Abstract: An optoelectronic device package includes an optoelectronic device having an active region on a first surface of a substrate, a bond pad area on the first surface that includes at least one contact pad electrically connected to the active region, and a cap having a first cap surface and a second cap surface, the first cap surface being secured to the first surface of the substrate, the cap covering the optoelectronic device. At least one of the cap and the substrate has an angled sidewall extending at an angle relative to an axis parallel to an optical path. The at least one contact pad is exposed by and adjacent to the angled sidewall. An electrical line extends from each of the at least one contact pad along the angled sidewall and to the second cap surface that does not overlap the active region.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: July 13, 2021
    Assignee: FLIR Systems, Inc.
    Inventors: Hagit Gershtenman-Avsian, Andrey Grinman, Alexander Feldman, Alan D. Kathman, David Ovrutsky
  • Publication number: 20200116979
    Abstract: Systems and methods according to one or more embodiments are provided for annealing a chalcogenide lens at an elevated temperature to accelerate release of internal stress within the chalcogenide lens caused during a molding process that formed the chalcogenide lens. In particular, the annealing process includes gradually heating the chalcogenide lens to a dwell temperature, maintaining the chalcogenide lens at the dwell temperature for a predetermined period of time, and gradually cooling the chalcogenide lens from the dwell temperature. The annealing process stabilizes the shape, the effective focal length, and/or the modulation transfer function of the chalcogenide lens. Associated optical assemblies and infrared imaging devices are also described.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 16, 2020
    Inventors: Alan D. Kathman, William J. Hall, Erika Goransson, Todd E. Rixman, Bengt Jervmo, Bo Dahllof, Stefan Gustavsson, Leif Sommar, Olof Holmgren, Hans Ostling
  • Patent number: 10401632
    Abstract: A planar line generator including a first planar surface extending in a first direction, a second planar surface facing the first planar surface, and a beam splitter in front of the second planar surface, the beam splitter configured to output, from light incident thereon, an undeflected beam, a first beam deflected to a first side of the undeflected beam along the first direction, and a second beam deflected to a second side of the undeflected beam along the first direction, wherein the second planar surface includes a line diffuser configured to receive the undeflected beam, and first and second diffusers having a design different from the line diffuser, the first and second diffusers being configured to receive the first and second beams, respectively.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: September 3, 2019
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Robert Hutchins, Alan D. Kathman
  • Publication number: 20190221679
    Abstract: An optoelectronic device package includes an optoelectronic device having an active region on a first surface of a substrate, a bond pad area on the first surface that includes at least one contact pad electrically connected to the active region, and a cap having a first cap surface and a second cap surface, the first cap surface being secured to the first surface of the substrate, the cap covering the optoelectronic device. At least one of the cap and the substrate has an angled sidewall extending at an angle relative to an axis parallel to an optical path. The at least one contact pad is exposed by and adjacent to the angled sidewall. An electrical line extends from each of the at least one contact pad along the angled sidewall and to the second cap surface that does not overlap the active region.
    Type: Application
    Filed: March 21, 2019
    Publication date: July 18, 2019
    Inventors: Hagit Gershtenman-Avsian, Andrey Grinman, Alexander Feldman, Alan D. Kathman, David Ovrutsky
  • Publication number: 20170003510
    Abstract: A planar line generator including a first planar surface extending in a first direction, a second planar surface facing the first planar surface, and a beam splitter in front of the second planar surface, the beam splitter configured to output, from light incident thereon, an undeflected beam, a first beam deflected to a first side of the undeflected beam along the first direction, and a second beam deflected to a second side of the undeflected beam along the first direction, wherein the second planar surface includes a line diffuser configured to receive the undeflected beam, and first and second diffusers having a design different from the line diffuser, the first and second diffusers being configured to receive the first and second beams, respectively.
    Type: Application
    Filed: March 9, 2015
    Publication date: January 5, 2017
    Inventors: Robert HUTCHINS, Alan D. KATHMAN
  • Patent number: 8821035
    Abstract: A method for transmitting a signal in an optical system includes generating an optical signal along an optical axis for transmission through an optical element, positioning the optical element so that a surface discontinuity is positioned along the optical axis such that the optical signal defines a substantially radially symmetric intensity profile, and launching the optical signal into an input face of an optical fiber such that the intensity profile is substantially null proximate an optical axis associated with the optical fiber.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: September 2, 2014
    Assignee: Flir Systems, Inc.
    Inventors: Alan D. Kathman, Charles S. Koehler, William H. Welch, Eric G. Johnson, Robert D. TeKolste
  • Publication number: 20140112619
    Abstract: A method for transmitting a signal in an optical system includes generating an optical signal along an optical axis for transmission through an optical element, positioning the optical element so that a surface discontinuity is positioned along the optical axis such that the optical signal defines a substantially radially symmetric intensity profile, and launching the optical signal into an input face of an optical fiber such that the intensity profile is substantially null proximate an optical axis associated with the optical fiber.
    Type: Application
    Filed: September 5, 2013
    Publication date: April 24, 2014
    Applicant: FLIR SYSTEMS, INC.
    Inventors: Alan D. KATHMAN, Charles S. KOEHLER, William H. WELCH, Eric G. JOHNSON, Robert D. TeKOLSTE
  • Patent number: 8529139
    Abstract: A method for transmitting a signal in an optical system includes generating an optical signal along an optical axis for transmission through an optical element, positioning the optical element so that a surface discontinuity is positioned along the optical axis such that the optical signal defines a substantially radially symmetric intensity profile, and launching the optical signal into an input face of an optical fiber such that the intensity profile is substantially null proximate an optical axis associated with the optical fiber.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: September 10, 2013
    Assignee: DigitalOptics Corporation East
    Inventors: Alan D. Kathman, Charles S. Koehler, William H. Welch, Eric G. Johnson, Robert D. TeKolste
  • Publication number: 20130130428
    Abstract: A spectrometer for use with a desired wavelength range includes an array of filters. Each filter outputs at least two non-contiguous wavelength peaks within the desired wavelength range. The array of filters is spectrally diverse over the desired wavelength range, and each filter in the array of filters outputs a spectrum of a first resolution. An array of detectors has a detector for receiving an output of a corresponding filter. A processor receives signals from each detector, and outputs a reconstructed spectrum having a second resolution, the second resolution being higher than any of the first resolution of each filter. Filters and detectors may be arranged into a plurality of imaging units, each imaging unit including first and second filters and first and second photosensing regions. A processor receives signals from each imaging unit, and generates a reconstructed spatial image comprised of discrete spatial units corresponding to each imaging unit.
    Type: Application
    Filed: January 9, 2013
    Publication date: May 23, 2013
    Inventors: Robert D. TeKOLSTE, Alan D. KATHMAN
  • Publication number: 20120294597
    Abstract: An assembly for an image capturing device may include a blade configured to pass light without modification when in a first position and, when in a second position, provide one of an aperture blocking a portion of the light, a low power lens, and a transparent film, and an actuator configured to move the blade between the first and second positions.
    Type: Application
    Filed: May 18, 2011
    Publication date: November 22, 2012
    Inventors: Gal SHABTAY, Ephraim GOLDENBERG, Alan D. KATHMAN, W. Hudson WELCH, Roman GUTIERREZ
  • Patent number: 8233757
    Abstract: An optical chassis includes a mount substrate an optoelectronic device on the mount substrate, a spacer substrate, and a sealer substrate. The mount substrate, the spacer substrate and the sealer substrate are vertically stacked and hermetically sealing the optoelectronic device. An external electrical contact for the optoelectronic device is provided outside the sealing. At least part of the optical chassis may be made on a wafer level. A passive optical element may be provided on the sealer substrate or on another substrate stacked and secured thereto.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: July 31, 2012
    Assignee: DigitalOptics Corporation East
    Inventors: Alan D Kathman, James E Morris, John Barnett Hammond, Michael R. Feldman
  • Publication number: 20120094066
    Abstract: A device having an optical system including first and second substrates, a first optical element on a first surface of the first substrate, and a second optical element on a second surface of the second substrate, the first and second surfaces being parallel and the first and second optical elements being substantially centered along an optical axis of the optical system, and an active element positioned in optical communication with the optical system, wherein an imaging function of the optical system is distributed over at least the first and second optical elements.
    Type: Application
    Filed: December 13, 2011
    Publication date: April 19, 2012
    Applicant: Digital Optics Corporation East*
    Inventors: Michael R. FELDMAN, Alan D. Kathman, William H. Welch
  • Patent number: 8153957
    Abstract: An integrated optical imaging system includes a first substrate having first and second opposing surfaces, a second substrate having third and fourth opposing surfaces, a spacer between a substantially planar portion of the third surface of the second substrate and a substantially planar portion of the second surface of the first substrate, at least two of the spacer, the first substrate and the second substrate sealing an interior space between the third surface of the second substrate and the second surface of the first substrate, and an optical imaging system having n surfaces, where n is greater than or equal to two, at least two of the n surfaces of the optical imaging system are on respective ones of the first, second, third and fourth surfaces.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: April 10, 2012
    Assignee: DigitalOptics Corporation East
    Inventors: Michael R. Feldman, Brian Harden, Alan D. Kathman, W. Hudson Welch
  • Publication number: 20120076456
    Abstract: A method for transmitting a signal in an optical system includes generating an optical signal along an optical axis for transmission through an optical element, positioning the optical element so that a surface discontinuity is positioned along the optical axis such that the optical signal defines a substantially radially symmetric intensity profile, and launching the optical signal into an input face of an optical fiber such that the intensity profile is substantially null proximate an optical axis associated with the optical fiber.
    Type: Application
    Filed: August 2, 2010
    Publication date: March 29, 2012
    Applicant: DigitalOptics Corporation East
    Inventors: Alan D. Kathman, Charles S. Koehler, William H. Welch, Eric G. Johnson, Robert D. TeKolste
  • Patent number: 8059345
    Abstract: An integrated micro-optical system includes at least two wafers with at least two optical elements provided on respective surfaces of the at least two wafers, at least one of the two optical elements being a spherical lens. The resulting optical system presents a high numerical aperture. One of the optical elements may be a refractive element formed in a material having a high index of refraction.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: November 15, 2011
    Assignee: Digitaloptics Corporation East
    Inventors: Michael R. Feldman, Alan D. Kathman, William H. Welch
  • Patent number: D875153
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: February 11, 2020
    Assignee: FLIR Systems, Inc.
    Inventors: Joseph Kostrzewa, Jared A. Faraudo, Dan S. Walker, Alan D. Kathman, Marcel Tremblay, Thad Lieb, Bruce A. Covington