Patents by Inventor Alan J. Telecky

Alan J. Telecky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11392029
    Abstract: Organometallic radiation resist compositions are described based on tin ions with alkyl ligands. Some of the compositions have branched alkyl ligands to provide for improved patterning contrast while maintaining a high degree of solution stability. Blends of compounds with distinct alkyl ligands can provide further improvement in the patterning. High resolution patterning with a half-pitch of no more than 25 nm can be achieved with a line width roughness of no more than about 4.5 nm. Synthesis techniques have been developed that allow for the formation of alkyl tin oxide hydroxide compositions with very low metal contamination.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: July 19, 2022
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Michael K. Kocsis, Alan J. Telecky, Brian J. Cardineau
  • Patent number: 11392031
    Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: July 19, 2022
    Assignee: Inpria Corporation
    Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
  • Publication number: 20220028685
    Abstract: Apparatuses and methods are described for removing edge bead on a wafer associated with a resist coating comprising a metal containing resist compositions. The methods can comprise applying a first bead edge rinse solution along a wafer edge following spin coating of the wafer with the metal based resist composition, wherein the edge bead solution comprises an organic solvent and an additive comprising a carboxylic acid, an inorganic fluorinated acid, a tetraalkylammonium compound, or a mixture thereof. Alternatively or additionally, the methods can comprise applying a protective composition to the wafer prior to performing an edge bead rinse. The protective composition can be a sacrificial material or an anti-adhesion material and can be applied only to the wafer edge or across the entire wafer in the case of the protective composition. Corresponding apparatuses for processing the wafers using these methods are presented.
    Type: Application
    Filed: October 11, 2021
    Publication date: January 27, 2022
    Inventors: Mollie Waller, Brian J. Cardineau, Kai Jiang, Alan J. Telecky, Stephen T. Meyers, Benjamin L. Clark
  • Patent number: 11187986
    Abstract: Apparatuses and methods are described for removing edge bead on a wafer associated with a resist coating comprising a metal containing resist compositions. The methods can comprise applying a first bead edge rinse solution along a wafer edge following spin coating of the wafer with the metal based resist composition, wherein the edge bead solution comprises an organic solvent and an additive comprising a carboxylic acid, an inorganic fluorinated acid, a tetraalkylammonium compound, or a mixture thereof. Alternatively or additionally, the methods can comprise applying a protective composition to the wafer prior to performing an edge bead rinse. The protective composition can be a sacrificial material or an anti-adhesion material and can be applied only to the wafer edge or across the entire wafer in the case of the protective composition. Corresponding apparatuses for processing the wafers using these methods are presented.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: November 30, 2021
    Assignee: Inpria Corporation
    Inventors: Mollie Waller, Brian J. Cardineau, Kai Jiang, Alan J. Telecky, Stephen T. Meyers, Benjamin L. Clark
  • Publication number: 20210349390
    Abstract: Multiple patterning approaches using radiation sensitive organometallic materials is described. In particular, multiple patterning approaches can be used to provide distinct multiple patterns of organometallic material on a hardmask or other substrate through a sequential approach that leads to a final pattern. The multiple patterning approach may proceed via sequential lithography steps with multiple organometallic layers and may involve a hardbake freezing after development of each pattern. Use of an organometallic resist with dual tone properties to perform pattern cutting and multiple patterning of a single organometallic layer are described. Corresponding structures are also described.
    Type: Application
    Filed: May 4, 2021
    Publication date: November 11, 2021
    Inventors: Peter de Schepper, Jason K. Stowers, Sangyoon Woo, Michael Kocsis, Alan J. Telecky
  • Publication number: 20210271170
    Abstract: The processing of radiation patternable organometallic coatings is shown to be improved through the appropriate selection of post processing conditions between coating and development of the pattern. In particular, a coated wafer can be subjected to process delays to allow aging of the coating at various process points, in particular following irradiation. Process delays can be combined and interspersed with heating steps. The atmosphere above the coated wafer at various process steps can be adjusted to obtain desired improvements in the development of the pattern. Reactive gases can be beneficial with respect to improvement of coating properties.
    Type: Application
    Filed: March 1, 2021
    Publication date: September 2, 2021
    Inventors: Alan J. Telecky, Jason K. Stowers, Douglas A. Keszler, Stephen T. Meyers, Peter de Schepper, Sonia Castellanos Ortega, Michael Greer, Kirsten Louthan
  • Publication number: 20210048745
    Abstract: Organometallic radiation resist compositions are described based on tin ions with alkyl ligands. Some of the compositions have branched alkyl ligands to provide for improved patterning contrast while maintaining a high degree of solution stability. Blends of compounds with distinct alkyl ligands can provide further improvement in the patterning. High resolution patterning with a half-pitch of no more than 25 nm can be achieved with a line width roughness of no more than about 4.5 nm. Synthesis techniques have been developed that allow for the formation of alkyl tin oxide hydroxide compositions with very low metal contamination.
    Type: Application
    Filed: October 30, 2020
    Publication date: February 18, 2021
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Michael K. Kocsis, Alan J. Telecky, Brian J. Cardineau
  • Publication number: 20200371439
    Abstract: Organometallic precursors are described for the formation of high resolution lithography patterning coatings based on metal oxide hydroxide chemistry. The precursor compositions generally comprise ligands readily hydrolysable by water vapor or other OH source composition under modest conditions. The organometallic precursors generally comprise a radiation sensitive organo ligand to tin that can result in a coating that can be effective for high resolution patterning at relatively low radiation doses and is particularly useful for EUV patterning. The precursors compositions are readily processable under commercially suitable conditions. Solution phase processing with in situ hydrolysis or vapor based deposition can be used to form the coatings.
    Type: Application
    Filed: August 6, 2020
    Publication date: November 26, 2020
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Brian J. Cardineau, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Alan J. Telecky
  • Patent number: 10782610
    Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: September 22, 2020
    Assignee: Inpria Corporation
    Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
  • Publication number: 20200292937
    Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 17, 2020
    Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
  • Patent number: 10775696
    Abstract: Organometallic precursors are described for the formation of high resolution lithography patterning coatings based on metal oxide hydroxide chemistry. The precursor compositions generally comprise ligands readily hydrolysable by water vapor or other OH source composition under modest conditions. The organometallic precursors generally comprise a radiation sensitive organo ligand to tin that can result in a coating that can be effective for high resolution patterning at relatively low radiation doses and is particularly useful for EUV patterning. The precursors compositions are readily processable under commercially suitable conditions. Solution phase processing with in situ hydrolysis or vapor based deposition can be used to form the coatings.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: September 15, 2020
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Brian J. Cardineau, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Alan J. Telecky
  • Publication number: 20200257196
    Abstract: Organometallic precursors are described for the formation of high resolution lithography patterning coatings based on metal oxide hydroxide chemistry. The precursor compositions generally comprise ligands readily hydrolysable by water vapor or other OH source composition under modest conditions. The organometallic precursors generally comprise a radiation sensitive organo ligand to tin that can result in a coating that can be effective for high resolution patterning at relatively low radiation doses and is particularly useful for EUV patterning. The precursors compositions are readily processable under commercially suitable conditions. Solution phase processing with in situ hydrolysis or vapor based deposition can be used to form the coatings.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Brian J. Cardineau, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Alan J. Telecky
  • Patent number: 10732505
    Abstract: Organometallic precursors are described for the formation of high resolution lithography patterning coatings based on metal oxide hydroxide chemistry. The precursor compositions generally comprise ligands readily hydrolysable by water vapor or other OH source composition under modest conditions. The organometallic precursors generally comprise a radiation sensitive organo ligand to tin that can result in a coating that can be effective for high resolution patterning at relatively low radiation doses and is particularly useful for EUV patterning. The precursors compositions are readily processable under commercially suitable conditions. Solution phase processing with in situ hydrolysis or vapor based deposition can be used to form the coatings.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: August 4, 2020
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Brian J. Cardineau, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Alan J. Telecky
  • Publication number: 20200209756
    Abstract: Apparatuses and methods are described for removing edge bead on a wafer associated with a resist coating comprising a metal containing resist compositions. The methods can comprise applying a first bead edge rinse solution along a wafer edge following spin coating of the wafer with the metal based resist composition, wherein the edge bead solution comprises an organic solvent and an additive comprising a carboxylic acid, an inorganic fluorinated acid, a tetraalkylammonium compound, or a mixture thereof. Alternatively or additionally, the methods can comprise applying a protective composition to the wafer prior to performing an edge bead rinse. The protective composition can be a sacrificial material or an anti-adhesion material and can be applied only to the wafer edge or across the entire wafer in the case of the protective composition. Corresponding apparatuses for processing the wafers using these methods are presented.
    Type: Application
    Filed: March 6, 2020
    Publication date: July 2, 2020
    Inventors: Mollie Waller, Brian J. Cardineau, Kai Jiang, Alan J. Telecky, Stephen T. Meyers, Benjamin L. Clark
  • Patent number: 10642153
    Abstract: Organometallic radiation resist compositions are described based on tin ions with alkyl ligands. Some of the compositions have branched alkyl ligands to provide for improved patterning contrast while maintaining a high degree of solution stability. Blends of compounds with distinct alkyl ligands can provide further improvement in the patterning. High resolution patterning with a half-pitch of no more than 25 nm can be achieved with a line width roughness of no more than about 4.5 nm. Synthesis techniques have been developed that allow for the formation of alkyl tin oxide hydroxide compositions with very low metal contamination.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: May 5, 2020
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Joseph Burton Edson, Kai Jiang, Douglas A. Keszler, Michael K. Kocsis, Alan J. Telecky, Brian J. Cardineau
  • Patent number: 10627719
    Abstract: Methods are described for removing edge bead on a wafer associated with a resist coating comprising a metal containing resist compositions. The methods can comprise applying a first bead edge rinse solution along a wafer edge following spin coating of the wafer with the metal based resist composition, wherein the edge bead solution comprises an organic solvent and an additive comprising a carboxylic acid, an inorganic fluorinated acid, a tetraalkylammonium compound, or a mixture thereof. Alternatively or additionally, the methods can comprise applying a protective composition to the wafer prior to performing an edge bead rinse. The protective composition can be a sacrificial material or an anti-adhesion material and can be applied only to the wafer edge or across the entire wafer in the case of the protective composition. Corresponding apparatuses for processing the wafers using these methods are presented.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: April 21, 2020
    Assignee: Inpria Corporation
    Inventors: Mollie Waller, Brian J. Cardineau, Kai Jiang, Alan J. Telecky, Stephen T. Meyers, Benjamin L. Clark
  • Publication number: 20200064733
    Abstract: Organometallic radiation resist compositions are described based on tin ions with alkyl ligands. Some of the compositions have branched alkyl ligands to provide for improved patterning contrast while maintaining a high degree of solution stability. Blends of compounds with distinct alkyl ligands can provide further improvement in the patterning. High resolution patterning with a half-pitch of no more than 25 nm can be achieved with a line width roughness of no more than about 4.5 nm. Synthesis techniques have been developed that allow for the formation of alkyl tin oxide hydroxide compositions with very low metal contamination.
    Type: Application
    Filed: November 5, 2019
    Publication date: February 27, 2020
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Michael K. Kocsis, Alan J. Telecky, Brian J. Cardineau
  • Publication number: 20190137870
    Abstract: Organometallic precursors are described for the formation of high resolution lithography patterning coatings based on metal oxide hydroxide chemistry. The precursor compositions generally comprise ligands readily hydrolysable by water vapor or other OH source composition under modest conditions. The organometallic precursors generally comprise a radiation sensitive organo ligand to tin that can result in a coating that can be effective for high resolution patterning at relatively low radiation doses and is particularly useful for EUV patterning. The precursors compositions are readily processable under commercially suitable conditions. Solution phase processing with in situ hydrolysis or vapor based deposition can be used to form the coatings.
    Type: Application
    Filed: January 3, 2019
    Publication date: May 9, 2019
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Brian J. Cardineau, Joseph B. Edson, Kai Jiang, Douglas A. Keszler, Alan J. Telecky
  • Patent number: 10228618
    Abstract: Organometallic precursors are described for the formation of high resolution lithography patterning coatings based on metal oxide hydroxide chemistry. The precursor compositions generally comprise ligands readily hydrolysable by water vapor or other OH source composition under modest conditions. The organometallic precursors generally comprise a radiation sensitive organo ligand to tin that can result in a coating that can be effective for high resolution patterning at relatively low radiation doses and is particularly useful for EUV patterning. The precursors compositions are readily processable under commercially suitable conditions. Solution phase processing with in situ hydrolysis or vapor based deposition can be used to form the coatings.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: March 12, 2019
    Assignee: Inpria Corporation
    Inventors: Stephen T. Meyers, Jeremy T. Anderson, Brian J. Cardineau, Joseph Burton Edson, Kai Jiang, Douglas A. Keszler, Alan J. Telecky
  • Publication number: 20180046086
    Abstract: Methods are described for removing edge bead on a wafer associated with a resist coating comprising a metal containing resist compositions. The methods can comprise applying a first bead edge rinse solution along a wafer edge following spin coating of the wafer with the metal based resist composition, wherein the edge bead solution comprises an organic solvent and an additive comprising a carboxylic acid, an inorganic fluorinated acid, a tetraalkylammonium compound, or a mixture thereof. Alternatively or additionally, the methods can comprise applying a protective composition to the wafer prior to performing an edge bead rinse. The protective composition can be a sacrificial material or an anti-adhesion material and can be applied only to the wafer edge or across the entire wafer in the case of the protective composition. Corresponding apparatuses for processing the wafers using these methods are presented.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Inventors: Mollie Waller, Brian J. Cardineau, Kai Jiang, Alan J. Telecky, Stephen T. Meyers, Benjamin L. Clark