Patents by Inventor Alberto Pesavento

Alberto Pesavento has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11107034
    Abstract: Portals and other chokepoints can be monitored with RFID reader systems. A portion of an RFID reader system capable of generating multiple beams can be mounted between two adjacent chokepoints such that some beams are associated with one chokepoint while other beams are associated with the other chokepoint. When replies from an item are received, the item can be associated with a chokepoint based on parameters or characteristics associated with the replies and/or the beam(s) on which the replies are received. If the detected item is moving, its movement direction through the chokepoint and/or its movement speed may also be determined.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: August 31, 2021
    Assignee: Impinj, Inc.
    Inventors: Alberto Pesavento, Adrian Wojnowski, Joshua F. Ensworth
  • Patent number: 11017349
    Abstract: An RFID loss-prevention system (LPS) may monitor RFID-tagged items in a facility. An RFID reader transmits a first inventory command configured to cause tags in a first state to respond, receive a reply from a first tag, determine that the first tag has a low transition risk, and cause the first tag to switch to a second state. The reader may also receive a reply from a second tag, determine that the second tag has a high transition risk, and cause the second tag to remain in the first state. The reader may then transmit a second inventory command configured to cause tags in the first state to respond, receive a reply from the second tag in response to the second inventory command, determine that the second tag has inappropriately exited the facility, and issue an alert.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: May 25, 2021
    Assignee: Impinj, Inc.
    Inventors: Christopher J. Diorio, Alberto Pesavento
  • Patent number: 10885417
    Abstract: Embodiments are directed to mitigating power-based impedance changes in Radio Frequency Identification (RFID) tags. The intrinsic impedance of components in an RFID tag front-end may change as incident RF power on the tag changes, causing the input impedance of the front-end to change and altering the RF properties of the RFID tag. A number of approaches can be used to mitigate input impedance variations due to power variations. One approach involves adjusting the operating point of one or more components in the RFID tag front-end to change their intrinsic impedances so as to counteract or mitigate the RF-power-based input impedance variation.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: January 5, 2021
    Assignee: Impinj, Inc.
    Inventors: Theron Stanford, Charles J. T. Peach, Jay A. Kuhn, Harley K. Heinrich, John D. Hyde, Christopher J. Diorio, Alberto Pesavento
  • Patent number: 10878371
    Abstract: RFID systems may be configured to use session-dependent replies. When an RFID tag is involved in a certain inventorying session, the tag may respond to inventorying commands with a reply that is at least partly generated based on the session. For example, the tag may generate a reply with a string that has parity based on the session or includes an identifier for the session. The string may be a random number, a tag identifier or item identifier, or any other suitable data sent from the tag.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: December 29, 2020
    Assignee: Impinj, Inc.
    Inventors: Theron Stanford, Alberto Pesavento, Vadim Lobanov, Christopher J. Diorio
  • Patent number: 10860819
    Abstract: Techniques are provided to estimate the location of an RFID tag using tag read information, such as a tag read count or a tag read rate, and an opportunity metric, such as an inventory cycle duration, inventory cycle rate, or inventory cycle count. A tag tracking system determines read information for a tag in a zone and an opportunity metric associated with the tag and the zone. The tag tracking system then computes a success rate based on the tag read information and opportunity metric, and uses the success rate to estimate the location of the tag.
    Type: Grant
    Filed: May 22, 2019
    Date of Patent: December 8, 2020
    Assignee: Impinj, Inc.
    Inventors: Alberto Pesavento, Thomas G. Anderl, Robert J. Ascani
  • Patent number: 10733395
    Abstract: Embodiments are directed to restricting access to Radio Frequency Identification (RFID) tag information based on location. Access to RFID tag information may be restricted at the reader level, at the requester level, and at the network level. When reader-level restrictions exist, devices may be prevented from inventorying tags and retrieving information from tags. When requester-level restrictions exist, a requester or device may be prevented from receiving tag information from inventoried tags or a network. When network-level restrictions exist, a network may discard or otherwise restrict tag information received from devices.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: August 4, 2020
    Assignee: Impinj, Inc.
    Inventors: Christopher J. Diorio, Scott A. Cooper, Kurt E. Sundstrom, Todd E. Humes, Alberto Pesavento
  • Patent number: 10650346
    Abstract: Portals and other chokepoints can be monitored with RFID reader systems. A portion of an RFID reader system capable of generating multiple beams can be mounted between two adjacent chokepoints such that some beams are associated with one chokepoint while other beams are associated with the other chokepoint. When replies from an item are received, the item can be associated with a chokepoint based on parameters or characteristics associated with the replies and/or the beam(s) on which the replies are received. If the detected item is moving, its movement direction through the chokepoint and/or its movement speed may also be determined.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: May 12, 2020
    Assignee: Impinj, Inc.
    Inventors: Alberto Pesavento, Adrian Wojnowski, Joshua F. Ensworth
  • Patent number: 10572789
    Abstract: Embodiments are directed to mitigating power-based impedance changes in Radio Frequency Identification (RFID) tags. The intrinsic impedance of components in an RFID tag front-end may change as incident RF power on the tag changes, causing the input impedance of the front-end to change and altering the RF properties of the RFID tag. A number of approaches can be used to mitigate input impedance variations due to power variations. One approach involves adjusting the operating point of one or more components in the RFID tag front-end to change their intrinsic impedances so as to counteract or mitigate the RF-power-based input impedance variation.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: February 25, 2020
    Assignee: Impinj, Inc.
    Inventors: Theron Stanford, Charles J. T. Peach, Jay A. Kuhn, Harley K. Heinrich, John D. Hyde, Christopher J. Diorio, Alberto Pesavento
  • Patent number: 10521768
    Abstract: An RFID loss-prevention system (LPS) may monitor RFID-tagged items in a facility. An RFID reader transmits a first inventory command configured to cause tags in a first state to respond, receive a reply from a first tag, determine that the first tag has a low transition risk, and cause the first tag to switch to a second state. The reader may also receive a reply from a second tag, determine that the second tag has a high transition risk, and cause the second tag to remain in the first state. The reader may then transmit a second inventory command configured to cause tags in the first state to respond, receive a reply from the second tag in response to the second inventory command, determine that the second tag has inappropriately exited the facility, and issue an alert.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: December 31, 2019
    Assignee: Impinj, Inc.
    Inventors: Christopher J. Diorio, Alberto Pesavento
  • Patent number: 10430623
    Abstract: RFID readers such as synthesized-beam readers may be used to track RFID tags of interest. When a tag of interest is detected, a reader may choose to keep the tag of interest from entering a quiet state, which a detected tag may normally enter. Subsequently, the tag of interest can respond more frequently than a tag in the quiet state, allowing the reader to track any movement of the tag of interest and determine a tag trajectory. The reader may further use the determined trajectory to cooperatively-power the tag of interest.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: October 1, 2019
    Assignee: Impinj, Inc.
    Inventors: Alberto Pesavento, Christopher J. Diorio, Matthew Robshaw
  • Patent number: 10373115
    Abstract: An RFID loss-prevention system (LPS) may monitor RFID-tagged items in a facility. An RFID reader transmits a first inventory command configured to cause tags in a first state to respond, receive a reply from a first tag, determine that the first tag has a low transition risk, and cause the first tag to switch to a second state. The reader may also receive a reply from a second tag, determine that the second tag has a high transition risk, and cause the second tag to remain in the first state. The reader may then transmit a second inventory command configured to cause tags in the first state to respond, receive a reply from the second tag in response to the second inventory command, determine that the second tag has inappropriately exited the facility, and issue an alert.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: August 6, 2019
    Assignee: Impinj, Inc.
    Inventors: Christopher J. Diorio, Alberto Pesavento
  • Patent number: 10325125
    Abstract: Techniques are provided to estimate the location of an RFID tag using tag read information, such as a tag read count or a tag read rate, and an opportunity metric, such as an inventory cycle duration, inventory cycle rate, or inventory cycle count. A tag tracking system determines read information for a tag in a zone and an opportunity metric associated with the tag and the zone. The tag tracking system then computes a success rate based on the tag read information and opportunity metric, and uses the success rate to estimate the location of the tag.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: June 18, 2019
    Assignee: Impinj, Inc.
    Inventors: Alberto Pesavento, Thomas G. Anderl, Robert J. Ascani
  • Patent number: 10204245
    Abstract: Embodiments are directed to restricting access to Radio Frequency Identification (RFID) tag information based on location. Access to RFID tag information may be restricted at the reader level, at the requester level, and at the network level. When reader-level restrictions exist, devices may be prevented from inventorying tags and retrieving information from tags. When requester-level restrictions exist, a requester or device may be prevented from receiving tag information from inventoried tags or a network. When network-level restrictions exist, a network may discard or otherwise restrict tag information received from devices.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: February 12, 2019
    Assignee: Impinj, Inc.
    Inventors: Christopher J. Diorio, Scott A. Cooper, Kurt E. Sundstrom, Todd E. Humes, Alberto Pesavento
  • Patent number: 10084597
    Abstract: A cryptographically-enabled RFID tag stores a primary secret key and derives secondary keys from the primary key. A secondary key may be derived by combining the primary key with one or more other parameters using one or more algorithms. The tag uses a derived secondary key to encrypt or electronically sign a tag response sent to a verifying entity. The verifying entity does not know the derived secondary key, but knows the tag primary key and the parameters and algorithms used to derive the secondary key and can derive all of the potential secondary keys. The verifying entity can then attempt to authenticate the tag or tag response by trying potential secondary keys.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 25, 2018
    Assignee: Impinj, Inc.
    Inventors: Matthew Robshaw, Alberto Pesavento, Christopher Diorio
  • Patent number: 10061950
    Abstract: Techniques are provided to estimate the location of an RFID tag using tag read information, such as a tag read count or a tag read rate, and an opportunity metric, such as an inventory cycle duration, inventory cycle rate, or inventory cycle count. A tag tracking system determines read information for a tag in a zone and an opportunity metric associated with the tag and the zone. The tag tracking system then computes a success rate based on the tag read information and opportunity metric, and uses the success rate to estimate the location of the tag.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: August 28, 2018
    Assignee: Impinj, Inc.
    Inventors: Alberto Pesavento, Thomas G. Anderl, Robert J. Ascani
  • Patent number: 10013587
    Abstract: Synthesized-beam RFID readers may be used to locate RFID tags. In one embodiment, a tag's response rates on different beams can be used, along with the target locations of those beams, to estimate the tag's location. The estimated tag location is within a region where beams with nonzero tag response rates overlap, and the distances of the estimated tag location from any two different beam target locations may correspond to a ratio of tag response rates on the two different beams. In another embodiment, a tag's response rates on different beam pairs configured to cooperatively power RFID tags can be used, along with the target locations of those beam pairs, to estimate the tag's location.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: July 3, 2018
    Assignee: Impinj, Inc.
    Inventors: Alberto Pesavento, Christopher J. Diorio
  • Patent number: 9959435
    Abstract: Embodiments are directed to restricting access to Radio Frequency Identification (RFID) tag information based on location. Access to RFID tag information may be restricted at the reader level, at the requester level, and at the network level. When reader-level restrictions exist, devices may be prevented from inventorying tags and retrieving information from tags. When requester-level restrictions exist, a requester or device may be prevented from receiving tag information from inventoried tags or a network. When network-level restrictions exist, a network may discard or otherwise restrict tag information received from devices.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: May 1, 2018
    Assignee: IMPINJ, INC.
    Inventors: Christopher J. Diorio, Scott A. Cooper, Kurt E. Sundstrom, Todd E. Humes, Alberto Pesavento
  • Patent number: 9916484
    Abstract: Synthesized-beam RFID readers may be used to locate RFID tags. In one embodiment, a tag's response rates on different beams can be used, along with the target locations of those beams, to estimate the tag's location. The estimated tag location is within a region where beams with nonzero tag response rates overlap, and the distances of the estimated tag location from any two different beam target locations may correspond to a ratio of tag response rates on the two different beams. In another embodiment, a tag's response rates on different beam pairs configured to cooperatively power RFID tags can be used, along with the target locations of those beam pairs, to estimate the tag's location.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: March 13, 2018
    Assignee: IMPINJ, INC.
    Inventors: Alberto Pesavento, Christopher J. Diorio
  • Patent number: 9887843
    Abstract: A cryptographically-enabled RFID tag stores a primary secret key and derives secondary keys from the primary key. A secondary key may be derived by combining the primary key with one or more other parameters using one or more algorithms. The tag uses a derived secondary key to encrypt or electronically sign a tag response sent to a verifying entity. The verifying entity does not know the derived secondary key, but knows the tag primary key and the parameters and algorithms used to derive the secondary key and can derive all of the potential secondary keys. The verifying entity can then attempt to authenticate the tag or tag response by trying potential secondary keys.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: February 6, 2018
    Assignee: IMPINJ, INC.
    Inventors: Matthew Robshaw, Alberto Pesavento, Christopher Diorio
  • Patent number: 9886658
    Abstract: Embodiments are directed to mitigating power-based impedance changes in Radio Frequency Identification (RFID) tags. The intrinsic impedance of components in an RFID tag front-end may change as incident RF power on the tag changes, causing the input impedance of the front-end to change and altering the RF properties of the RFID tag. A number of approaches can be used to mitigate input impedance variations due to power variations. One approach involves adjusting the operating point of one or more components in the RFID tag front-end to change their intrinsic impedances so as to counteract or mitigate the RF-power-based input impedance variation.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: February 6, 2018
    Assignee: IMPINJ, INC
    Inventors: Theron Stanford, Charles J. T. Peach, Jay A. Kuhn, Harley K. Heinrich, John D. Hyde, Christopher J. Diorio, Alberto Pesavento