Patents by Inventor Albertus Victor Gerardus MANGNUS

Albertus Victor Gerardus MANGNUS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961700
    Abstract: Embodiments consistent with the disclosure herein include methods for image enhancement for a multi-beam charged-particle inspection system. Systems and methods consistent with the present disclosure include analyzing signal information representative of first and second images, wherein the first image is associated with a first beam of a set of beams and the second image is associated with a second beam of the set of beams; detecting, based on the analysis, disturbances in positioning of the first and second beams in relation to a sample; obtaining an image of the sample using the signal information of the first and second beams; and correcting the image of the sample using the identified disturbances.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: April 16, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Maikel Robert Goosen, Albertus Victor Gerardus Mangnus, Lucas Kuindersma
  • Patent number: 11942302
    Abstract: Apparatuses and methods for charged-particle detection may include a deflector system configured to direct charged-particle pulses, a detector having a detection element configured to detect the charged-particle pulses, and a controller having a circuitry configured to control the deflector system to direct a first and second charged-particle pulses to the detection element; obtain first and second timestamps associated with when the first charged-particle pulse is directed by the deflector system and detected by the detection element, respectively, and third and fourth timestamps associated with when the second charged-particle pulse is directed by the deflector system and detected by the detection element, respectively; and identify a first and second exiting beams based on the first and second timestamps, and the third and fourth timestamps, respectively.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: March 26, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Arno Jan Bleeker, Pieter Willem Herman De Jager, Maikel Robert Goosen, Erwin Paul Smakman, Albertus Victor Gerardus Mangnus, Yan Ren, Adam Lassise
  • Patent number: 11942303
    Abstract: Embodiments consistent with the disclosure herein include methods and a multi-beam apparatus configured to emit charged-particle beams for imaging a top and side of a structure of a sample, including: a deflector array including a first deflector and configured to receive a first charged-particle beam and a second charged-particle beam; a blocking plate configured to block one of the first charged-particle beam and the second charged-particle beam; and a controller having circuitry and configured to change the configuration of the apparatus to transition between a first mode and a second mode. In the first mode, the deflector array directs the second charged-particle beam to the top of the structure, and the blocking plate blocks the first charged-particle beam. And in the second mode, the first deflector deflects the first charged-particle beam to the side of the structure, and the blocking plate blocks the second charged-particle beam.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: March 26, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Yan Ren, Albertus Victor Gerardus Mangnus
  • Publication number: 20240087844
    Abstract: The disclosed embodiments provide a various techniques for detecting secondary charged particles and backscatter charged particles, including accelerating charged particle sub-beams along sub-beam paths to a sample, repelling secondary charged particles from detector arrays, using mirror detector arrays, using multiple detector arrays, and providing devices and detectors which can switch between modes for primarily detecting charged particles and modes for primarily detecting secondary particles.
    Type: Application
    Filed: November 17, 2023
    Publication date: March 14, 2024
    Applicant: ASML Netherlands B.V.
    Inventor: Albertus Victor Gerardus MANGNUS
  • Publication number: 20240087835
    Abstract: The present disclosure provides a charged particle optical device for a charged particle system. The device projects an array of charged particle beams towards a sample. The device comprises a control lens array to control a parameter of the array of beams; and an objective lens array to project the array of beams onto the sample, the objective lens array being down beam of the control lens. The objective lens array comprises: an upper electrode; and a lower electrode arrangement that comprises an up-beam electrode and a down-beam electrode. The device is configured to apply an upper potential to the upper electrode, an up-beam potential to the up-beam electrode and a down-beam potential to the down-beam electrode. The potentials are controlled to control the landing energy of the beams on the sample and. to maintain focus of the beams on the sample at the landing energies.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Applicant: ASML Netherlands B.V.
    Inventor: Albertus Victor Gerardus MANGNUS
  • Publication number: 20240044824
    Abstract: The embodiments of the present disclosure provide various techniques for detecting backscatter charged particles, including accelerating charged particle sub-beams along sub-beam paths to a sample, repelling secondary charged particles from detector arrays, and providing devices and detectors which can switch between modes for primarily detecting charged particles and modes for primarily detecting secondary particles.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 8, 2024
    Applicant: ASML Netherlands B.V.
    Inventors: Marco Jan-Jaco WIELAND, Albertus Victor Gerardus MANGNUS
  • Patent number: 11881374
    Abstract: Disclosed among other aspects is a charged particle inspection system including an absorbing component and a programmable charged-particle mirror plate arranged to modify the energy distribution of electrons in a beam and shape the beam to reduce the energy spread of the electrons and aberrations of the beam, with the absorbing component including a set of absorbing structures configured as absorbing structures provided on a transparent conductive layer and a method using such an absorbing component and with the programmable charged-particle mirror plate including a set of pixels configured to generate a customized electric field to shape the beam and using such a programmable charged-particle mirror plate.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: January 23, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Shakeeb Bin Hasan, Yan Ren, Maikel Robert Goosen, Albertus Victor Gerardus Mangnus, Erwin Paul Smakman
  • Patent number: 11821859
    Abstract: The embodiments of the present disclosure provide various techniques for detecting backscatter charged particles, including accelerating charged particle sub-beams along sub-beam paths to a sample, repelling secondary charged particles from detector arrays, and providing devices and detectors which can switch between modes for primarily detecting charged particles and modes for primarily detecting secondary particles.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: November 21, 2023
    Assignee: ASML Netherlands B.V.
    Inventors: Marco Jan-Jaco Wieland, Albertus Victor Gerardus Mangnus
  • Patent number: 11791132
    Abstract: Systems and methods of measuring beam current in a multi-beam apparatus are disclosed. The multi-beam apparatus may include a charged-particle source configured to generate a primary charged-particle beam, and an aperture array. The aperture array may comprise a plurality of apertures configured to form a plurality of beamlets from the primary charged-particle beam, and a detector including circuitry to detect a current of at least a portion of the primary charged-particle beam irradiating the aperture array. The method of measuring beam current may include irradiating the primary charged-particle beam on the aperture array and detecting an electric current of at least a portion of the primary charged-particle beam.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: October 17, 2023
    Assignee: ASML Netherlands B.V.
    Inventors: Albertus Victor Gerardus Mangnus, Maikel Robert Goosen, Erwin Paul Smakman
  • Publication number: 20230324318
    Abstract: A charged-particle tool configured to generate a plurality of sub-beams from a beam of charged particles and direct the sub-beams downbeam toward a sample position, the tool charged-particle tool comprising at least three charged-particle-optical components; a detector module; and a controller. Thea detector module is configured to generate a detection signal in response to charged particles that propagate upbeam from the direction of the sample position. The controller is configured to operate the tool in a calibration mode. The charged-particle-optical components include: a charged-particle source configured to emit a beam of charged particles and a beam generator configured to generate the sub-beams. The detection signal contains information about alignment of at least two of the charged-particle-optical components. The charged-particle optical components comprise two or more charged-particle optical elements comprising an array of apertures for which the charged particles may be monitored.
    Type: Application
    Filed: June 1, 2023
    Publication date: October 12, 2023
    Applicant: ASML Netherlands B.V.
    Inventors: Yan REN, Erwin SLOT, Albertus Victor, Gerardus MANGNUS, Marijke SCOTUZZI, Erwin Paul SMAKMAN
  • Publication number: 20230207255
    Abstract: Disclosed herein is a multi-beam charged particle column configured to project a multi-beam of charged particles towards a target, the multi-beam charged particle column comprising at least one aperture array comprising at least two different aperture patterns; and a rotator configured to rotate the aperture array between the different aperture patterns.
    Type: Application
    Filed: March 3, 2023
    Publication date: June 29, 2023
    Applicant: ASML Netherlands B.V.
    Inventors: Vincent Claude BEUGIN, Stijn Wilem Herman Karel STEENBRINK, Martin EBERT, Diego MARTINEZ NEGRETE GASQUE, Hindrik Willem MOOK, Albertus Victor Gerardus MANGNUS
  • Publication number: 20230154723
    Abstract: Embodiments consistent with the disclosure herein include methods and a multi-beam apparatus configured to emit charged-particle beams for imaging a top and side of a structure of a sample, including: a deflector array including a first deflector and configured to receive a first charged-particle beam and a second charged-particle beam; a blocking plate configured to block one of the first charged-particle beam and the second charged-particle beam; and a controller having circuitry and configured to change the configuration of the apparatus to transition between a first mode and a second mode. In the first mode, the deflector array directs the second charged-particle beam to the top of the structure, and the blocking plate blocks the first charged-particle beam. And in the second mode, the first deflector deflects the first charged-particle beam to the side of the structure, and the blocking plate blocks the second charged-particle beam.
    Type: Application
    Filed: December 6, 2019
    Publication date: May 18, 2023
    Inventors: Yan REN, Albertus Victor Gerardus MANGNUS
  • Publication number: 20230154722
    Abstract: Apparatuses and methods for charged-particle detection may include a deflector system configured to direct charged-particle pulses, a detector having a detection element configured to detect the charged-particle pulses, and a controller having a circuitry configured to control the deflector system to direct a first and second charged-particle pulses to the detection element; obtain first and second timestamps associated with when the first charged-particle pulse is directed by the deflector system and detected by the detection element, respectively, and third and fourth timestamps associated with when the second charged-particle pulse is directed by the deflector system and detected by the detection element, respectively; and identify a first and second exiting beams based on the first and second timestamps, and the third and fourth timestamps, respectively.
    Type: Application
    Filed: December 17, 2019
    Publication date: May 18, 2023
    Inventors: Arno Jan BLEEKER, Pieter Willem Herman DE JAGER, Maikel Robert GOOSEN, Erwin Paul SMAKMAN, Albertus Victor Gerardus MANGNUS, Yan REN, Adam LASSISE
  • Publication number: 20230048580
    Abstract: An apparatus comprising a set of pixels configured to shape a beamlet approaching the set of pixels and a set of pixel control members respectively associated with each of the set of pixels, each pixel control member being arranged and configured to apply a signal to the associated pixel for shaping the beamlet.
    Type: Application
    Filed: January 4, 2021
    Publication date: February 16, 2023
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Albertus Victor Gerardus MANGNUS, Maikel Robert GOOSEN, Erwin Paul SMAKMAN, Yan REN
  • Publication number: 20230005706
    Abstract: A detector for use in a charged particle device for an assessment tool to detect signal particles from a sample, the detector including a substrate, the substrate including: a semiconductor element configured to detect signal particles above a first energy threshold; and a charge-based element configured to detect signal particles below a second energy threshold.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 5, 2023
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Albertus Victor Gerardus MANGNUS, Erwin SLOT
  • Publication number: 20220415611
    Abstract: A multi-source illumination apparatus for illuminating a sample with charged particles, wherein beams, from a plurality of sources, are arranged such that a beam from at least one source intersects, at a plane of a condenser lens, with at least part of one other beam from a different one of the plurality of sources. The condenser lens is configured to separately collimate the received beams from each source. A manipulator array arrangement is configured to manipulate the collimated beams to generate one or more beams, in a single column, that include charged particles from the plurality of sources. The manipulator array arrangement includes a multi-beam generator configured to receive the plurality of substantially parallel substantially collimated beams generated by the deflector array, and generate a multibeam in dependence on the received plurality of substantially parallel substantially collimated beams, wherein the multi-beam includes a plurality of substantially collimated sub-beams.
    Type: Application
    Filed: November 19, 2020
    Publication date: December 29, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Stijn Wilem Herman Karel STEENBRINK, Marco Jan-Jaco WIELAND, Albertus Victor Gerardus MANGNUS
  • Patent number: 11442368
    Abstract: A method of determining a measurement sequence for an inspection tool inspecting a structure generated by a lithographic process performed by a lithographic system is presented, the method including deriving a model for the lithographic process as performed by the lithographic system, the model including a relationship between a set of system variables describing the lithographic system and an output variable representing the structure resulting of the lithographic process, determining an observability of one or more system variables in the output variable, and determining the measurement sequence for the inspection tool, based on the observability.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: September 13, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Richard Quintanilha, Scott Anderson Middlebrooks, Adrianus Cornelis Matheus Koopman, Albertus Victor Gerardus Mangnus
  • Publication number: 20220213593
    Abstract: Methods and apparatus for forming a patterned layer of material are disclosed. In one arrangement, a selected portion of a surface of a substrate is irradiated during a deposition process, the irradiation being such as to locally drive the deposition process in the selected portion to form a layer of deposited material in a pattern defined by the selected portion. The deposited material is annealed to modify the deposited material.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 7, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Tamara DRUZHININA, Jim Vincent OVERKAMP, Alexey Olegovich POLYAKOV, Teis Johan COENEN, Evgenia KURGANOVA, Ionel Mugurel CIOBICA, Alexander Ludwig KLEIN, Albertus Victor Gerardus MANGNUS, Marijke SCOTUZZI, Bastiaan Maurice VAN DEN BROEK
  • Publication number: 20220196581
    Abstract: The embodiments of the present disclosure provide various techniques for detecting backscatter charged particles, including accelerating charged particle sub-beams along sub-beam paths to a sample, repelling secondary charged particles from detector arrays, and providing devices and detectors which can switch between modes for primarily detecting charged particles and modes for primarily detecting secondary particles.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 23, 2022
    Applicant: ASML Netherlands B.V.
    Inventors: Marco Jan-Jaco WIELAND, Albertus Victor Gerardus MANGNUS
  • Publication number: 20220199355
    Abstract: Disclosed among other aspects is a charged particle inspection system including a phaseplate configured and arranged to modify the local phase of charged particles in a beam to reduce the effects of lens aberrations. The phaseplate is made up of an array of apertures with the voltage and/or a degree of obscuration of the apertures being controlled individually or in groups.
    Type: Application
    Filed: December 30, 2021
    Publication date: June 23, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Albertus Victor Gerardus MANGNUS, Maikel Robert GOOSEN