Patents by Inventor Albrecht Moritz

Albrecht Moritz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090220991
    Abstract: The invention discloses nearly 480 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human Leukemia, and provides phosphorylation site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 3, 2009
    Inventors: Roberto Polakiewicz, Valerie Goss, Albrecht Moritz, Ting-Lei Gu, Kimberly Lee
  • Publication number: 20090142777
    Abstract: The invention discloses 424 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human Leukemia, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Adaptor/Scaffold proteins, Cytoskeletal proteins, Cellular Metabolism enzymes, G Protein/GTPase Activating/Guanine Nucleotide Exchange Factor proteins, Immunoglobulin Superfamily proteins, Inhibitor proteins, Lipid Kinases, Nuclear DNA Repair/RNA Binding/Transcription proteins, Serine/Threonine Protein Kinases, Tyrosine Kinases, Protein Phosphatases, and Translation/Transporter proteins.
    Type: Application
    Filed: October 5, 2007
    Publication date: June 4, 2009
    Inventors: Valerie Goss, Albrecht Moritz, Ting-Lei Gu, Kimberly Lee, Roberto Polakiewicz
  • Publication number: 20090099340
    Abstract: The invention discloses 214 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human carcinoma, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Adaptor/Scaffold proteins, Cytoskeleton proteins, GTP Signaling proteins, Kinases, Metabolism proteins, Phosphatases/Phospho-diesterases/Proteases, Receptor proteins, RNA Processing proteins, Transcription proteins, Translation proteins, Transporter proteins, and Ubitquitin proteins, as well as other protein types.
    Type: Application
    Filed: October 12, 2007
    Publication date: April 16, 2009
    Inventors: Ailan Guo, Klarisa Rikova, Albrecht Moritz, Yu Li, Charles Farnsworth, Kimberly Lee, Roberto Polakiewicz
  • Publication number: 20090098581
    Abstract: The invention discloses 482 novel phosphorylation sites identified in carcinoma and/or leukemia, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
    Type: Application
    Filed: April 18, 2008
    Publication date: April 16, 2009
    Inventors: Peter Hornbeck, Ailan Guo, Ting-Lei Gu, Klarisa Rikova, Albrecht Moritz, Charles Farnsworth, Matthew Stokes, Jian Yu, Erik Spek, Yu Li, Anthony Possemato, Jessica Cherry, Valerie Goss, Jeffrey Mitchell, John Rush, Corinne Michaud
  • Publication number: 20090081659
    Abstract: The invention discloses 364 novel phosphorylation sites identified in carcinoma, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
    Type: Application
    Filed: March 7, 2008
    Publication date: March 26, 2009
    Inventors: Peter Hornbeck, Ailan Guo, Albrecht Moritz, John Rush, Charles Farnsworth, Matthew Stokes, Anthony Passemato
  • Publication number: 20090068684
    Abstract: The invention discloses 345 novel phosphorylation sites identified in carcinoma and leukemia, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
    Type: Application
    Filed: March 26, 2008
    Publication date: March 12, 2009
    Inventors: Albrecht Moritz, Matthew Stokes, Charles Farnsworth, Anthony Possemato
  • Publication number: 20090061459
    Abstract: The invention discloses nearly 443 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human carcinoma, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Protein kinases (including Serine/Threonine dual specificity, and Tyrosine kinases), Adaptor/Scaffold proteins, Transcription factors, Phospoatases, Tumor supressors, Ubiquitin conjugating system proteins, Translation initiation complex proteins, RNA binding proteins, Apoptosis proteins, Adhesion proteins, G protein regulators/GTPase activating protein/Guanine nucleotide exchange factor proteins, and DNA binding/replication/repair proteins, as well as other protein types.
    Type: Application
    Filed: February 29, 2008
    Publication date: March 5, 2009
    Inventors: Roberto Polakiewicz, Ailan Guo, Albrecht Moritz, Klarisa Rikova, Kimberly Lee, Erik Spek, Yu Li, Charles Farnsworth
  • Publication number: 20090053831
    Abstract: The invention discloses 405 novel phosphorylation sites identified in carcinoma and/or leukemia, peptides (including AQUA peptides) comprising a phosphorylation site of the invention, antibodies specifically bind to a novel phosphorylation site of the invention, and diagnostic and therapeutic uses of the above.
    Type: Application
    Filed: April 30, 2008
    Publication date: February 26, 2009
    Inventors: Peter Hornbeck, Ailan Guo, Ting-Lei Gu, Klarisa Rikova, Albrecht Moritz, Charles Farnsworth, Matthew Stokes, Jian Yu, Erik Spek, Yu Li, Valerie Goss, Francesco Boccalatte
  • Publication number: 20080248490
    Abstract: The invention discloses nearly 288 novel phosphorylation sites identified in signal transduction proteins and pathways underlying human Leukemia, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Adaptor/Scaffold proteins, Cytoskeletal proteins, Cellular Metabolism enzymes, G Protein/GTPase Activating/Guanine Nucleotide Exchange Factor proteins, Immunoglobulin Superfamily proteins, Inhibitor proteins, Lipid Kinases, Nuclear DNA Repair/RNA Binding/Transcription proteins, Serine/Threonine Protein Kinases, Tyrosine Kinases, Protein Phosphatases, and Translation/Transporter proteins.
    Type: Application
    Filed: February 29, 2008
    Publication date: October 9, 2008
    Inventors: Roberto Polakiewicz, Valerie Goss, Albrecht Moritz, Ting-Lei Gu, Kimberly Lee
  • Publication number: 20080108795
    Abstract: The invention discloses 168 novel phosphorylation sites identified in signal transduction proteins and pathways downstream of, and including, EGFR kinase, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Actin Binding proteins, Adaptor/Scaffold proteins, Calcium-Binding Proteins, Cell Cycle Regulation proteins, Cytoskeletal proteins, DNA Binding and Replication Proteins, GTPase Activating proteins, Guanine Nucleotide Exchange Factor proteins, Lipid Kinases, Receptor Tyrosine Kinases, Receptor Tyrosine Kinase ligands, Protein Kinases, Receptor and Protein Phosphatases, Transcription Factor proteins, Tumor Suppressor proteins, and Vesicle proteins.
    Type: Application
    Filed: June 21, 2007
    Publication date: May 8, 2008
    Inventors: Ailan Guo, Kimberly Lee, Klarisa Rikova, Charles Farnsworth, Albrecht Moritz, Yu Li, Robert Polakiewicz
  • Publication number: 20080038752
    Abstract: The invention discloses 102 novel phosphorylation sites identified in signal transduction proteins and pathways downstream of c-Src kinase, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Adaptor/Scaffold proteins, Actin Binding proteins, Cytoskeletal proteins, G protein/GTPase Activating protein/Guanine Nucleotide Exchange Factor proteins, Helicases, RNA Binding proteins, Transcription/Translation Factor or Initiation Complex proteins, Cellular Metabolism Enzymes, and Vesicle proteins.
    Type: Application
    Filed: August 11, 2006
    Publication date: February 14, 2008
    Inventors: Albrecht Moritz, Kimberly Lee, John Rush, Roberto Polakiewicz
  • Publication number: 20080014598
    Abstract: The invention discloses ten newly discovered PI3K regulatory subunit phosphorylation sites, tyrosines 467, 452, 463, and 470 in PI3KR1 (PI3Kp85 alpha), tyrosines 464, 460, and 467 in PI3KR2 (PI3Kp85 beta), and tyrosines 199, 184, and 202 in PI3KR3 (PI3Kp55 gamma), and provides reagents, including polyclonal and monoclonal antibodies, that selectively bind to PI3K when phosphorylated at one of the disclosed sites. Also provided are assays utilizing this reagent, including methods for determining the phosphorylation of PI3K in a biological sample, selecting a patient suitable for PI3K inhibitor therapy, profiling PI3K activation in a test tissue, and identifying a compound that modulates phosphorylation of PI3K in a test tissue, by using a detectable reagent, such as the disclosed antibody, that binds to PI3K only when phosphorylated at a disclosed site. The sample or test tissue may be taken from a subject suspected of having cancer, such as lymphoma, glioma, and colon cancer, involving altered PI3K signaling.
    Type: Application
    Filed: May 4, 2007
    Publication date: January 17, 2008
    Inventors: Thorsten Wiederhold, Valerie Goss, Albrecht Moritz, Klarisa Rikova, Ting-Lei Gu, Peter Hornbeck
  • Publication number: 20070072235
    Abstract: The invention discloses 211 novel phosphorylation sites identified in signal transduction proteins and pathways underlying Anaplastic Large Cell Lymphoma (ALCL) involving the ALK-NPM translocation/fusion, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose. Among the phosphorylation sites identified are sites occurring in the following protein types: Protein Kinases (including Receptor Tyrosine Kinases), Adaptor/Scaffold Proteins, Cellular Metabolism or Miscellaneous Enzymes, Oxidoreductases, Transcription Factors, Cytoskeletal Proteins, Translation Initiation Complexes, RNA Binding Proteins, Proteases, Acetyltransferases, G protein regulators/GTPases, Helicases, Apoptosis/Cell Cycle Regulation proteins, and Hydrolases.
    Type: Application
    Filed: August 11, 2006
    Publication date: March 29, 2007
    Inventors: Albrecht Moritz, Kimberly Lee, John Rush, Roberto Polakiewicz
  • Publication number: 20070059845
    Abstract: The invention discloses 95 novel phosphorylation sites identified in signal transduction proteins and pathways downstream of the T-cell receptor, and provides phosphorylation-site specific antibodies and heavy-isotope labeled peptides (AQUA peptides) for the selective detection and quantification of these phosphorylated sites/proteins, as well as methods of using the reagents for such purpose.
    Type: Application
    Filed: August 11, 2006
    Publication date: March 15, 2007
    Inventors: Albrecht Moritz, Kimberly Lee, John Rush, Roberto Polakiewicz
  • Publication number: 20030186254
    Abstract: The present invention discloses complexes of cellular signaling proteins that interact in vivo with the HIV-encoded auxiliary proteins Nef and Tat to modulate their activity. This complex includes the novel serine/threonine kinase PAK4 and the novel guanine nucleotide exchange factor Cdc42-GEF, which synergize to stimulate Tat transcriptional activity, and the acetyl-transferase Tip60 which modifies Nef. These cellular partners of the HIV auxiliary proteins represent novel targets for HIV therapeutics. The invention provides isolated DNA and vectors encoding PAK4 and Cdc42-GEF, and methods of producing recombinant forms of these proteins. The invention also provides methods for identifying compounds that modulate the activity of HIV-Tat, HIV-Nef or Tip60, and methods for modulating the activity of these enzymes.
    Type: Application
    Filed: April 29, 2002
    Publication date: October 2, 2003
    Applicant: CELL SIGNALING TECHNOLOGY, INC.
    Inventors: Michael B. Melnick, Albrecht Moritz, Michael J. Comb