Patents by Inventor Alejandro G. Schrott

Alejandro G. Schrott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8772906
    Abstract: Memory cell structures for phase change memory. An example memory cell structure comprising includes a bottom electrode comprised of electrically conducting material, and phase change material disposed above the bottom electrode. A layer of thermally insulating material is disposed, at least partially, between the bottom electrode and the phase change material. The thermally insulating material is comprised of Tantalum Oxide. A top electrode is comprised of electrically conducting material.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Roger W. Cheek, Chung H. Lam, Eric A. Joseph, Bipin Rajendran, Alejandro G. Schrott, Yu Zhu
  • Publication number: 20140166962
    Abstract: A phase change memory cell and a method for fabricating the phase change memory cell. The phase change memory cell includes a bottom electrode and a first non-conductive layer. The first non-conductive layer defines a first well, a first electrically conductive liner lines the first well, and the first well is filled with a phase change material in the phase change memory cell.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew J. BrightSky, Chung H. Lam, Jing Li, Alejandro G. Schrott, Norma E. Sosa Cortes
  • Publication number: 20140170831
    Abstract: A phase change memory cell and a method for fabricating the phase change memory cell. The phase change memory cell includes a bottom electrode and a first non-conductive layer. The first non-conductive layer defines a first well, a first electrically conductive liner lines the first well, and the first well is filled with a phase change material in the phase change memory cell.
    Type: Application
    Filed: August 5, 2013
    Publication date: June 19, 2014
    Applicant: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Chung H. Lam, Jing Li, Alejandro G. Schrott, Norma E. Sosa Cortes
  • Publication number: 20140158971
    Abstract: An example embodiment is a phase change memory cell including a bottom electrode and phase change material carried within a via above the bottom electrode. A surfactant layer is deposited above the bottom electrode. The surfactant layer includes a surfactant configured to lower an interfacial force between the phase change material and the via surface.
    Type: Application
    Filed: February 13, 2014
    Publication date: June 12, 2014
    Applicant: International Business Machines Corporation
    Inventors: Chung H. Lam, Alejandro G. Schrott
  • Publication number: 20140154862
    Abstract: A memory cell and a method of making the same, that includes insulating material deposited on a substrate, a bottom electrode formed within the insulating material, a plurality of insulating layers deposited above the bottom electrode and at least one of which acts as an intermediate insulating layer. A via is defined in the insulating layers above the intermediate insulating layer. A channel is created for etch with a sacrificial spacer. A pore is defined in the intermediate insulating layer. All insulating layers above the intermediate insulating layer are removed, and the entirety of the remaining pore is filled with phase change material. An upper electrode is formed above the phase change material.
    Type: Application
    Filed: February 6, 2014
    Publication date: June 5, 2014
    Applicants: Macronix International Co., Ltd., International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Roger W. Cheek, Chung H. Lam, Hsiang-Lan Lung, Eric A. Joseph, Alejandro G. Schrott
  • Patent number: 8686391
    Abstract: A method of manufacturing an electrode is provided that includes providing a pillar of a first phase change material atop a conductive structure of a dielectric layer; or the inverted structure; forming an insulating material atop dielectric layer and adjacent the pillar, wherein an upper surface of the first insulating material is coplanar with an upper surface of the pillar; recessing the upper surface of the pillar below the upper surface of the insulating material to provide a recessed cavity; and forming a second phase change material atop the recessed cavity and the upper surface of the insulating material, wherein the second phase change material has a greater phase resistivity than the first phase change material.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: April 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alejandro G. Schrott, Chung H. Lam, Eric A. Joseph, Matthew J. Breitwisch, Roger W. Cheek
  • Patent number: 8680501
    Abstract: A phase change memory cell with substantially void free crystalline phase change material. An example memory cell includes a substrate and a bottom electrode carried by the substrate. The bottom electrode is a thermal conductor. A phase change layer includes phase change material. The phase change layer is void free within a switching region when the phase change material is in a crystalline phase. A top electrode is positioned over the phase change layer.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alejandro G. Schrott, Chung H. Lam, Stephen M. Rossnagel
  • Patent number: 8633464
    Abstract: A method for fabricating a phase change memory device including a plurality of in via phase change memory cells includes forming pillar heaters formed of a conductive material along a contact surface of a substrate corresponding to each of an array of conductive contacts to be connected to access circuitry, forming a dielectric layer along exposed areas of the substrate surrounding the pillar heaters, forming an interlevel dielectric (ILD) layer above the dielectric layer, etching a via to the dielectric layer, each via corresponding to each of pillar heater such that an upper surface of each pillar heater is exposed within each via, recessing each pillar heater, depositing phase change material in each via on each recessed pillar heater, recessing the phase change material within each via, and forming a top electrode within the via on the phase change material.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: January 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Roger W. Cheek, Eric A. Joseph, Chung H. Lam, Alejandro G. Schrott
  • Patent number: 8623734
    Abstract: An example embodiment is a method for filling a via hole with phase change material. The method steps include forming a bottom electrode in a substrate, depositing a dielectric layer above the bottom electrode, and forming a via hole within the dielectric layer down to a top surface of the bottom electrode. The substrate is heated to a reaction temperature and a first phase change material precursor is deposited within the via hole. The first precursor is configured to decompose on the top surface of the bottom electrode and chemisorb on a top surface of the dielectric layer at the reaction temperature. A second precursor is deposited within the via hole after the first precursor at least partially decomposes on the top surface of the bottom electrode.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: January 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Chieh-Fang Chen, Chung H. Lam, Alejandro G. Schrott
  • Publication number: 20130309782
    Abstract: An example embodiment disclosed is a process for fabricating a phase change memory cell. The method includes forming a bottom electrode, creating a pore in an insulating layer above the bottom electrode, depositing piezoelectric material in the pore, depositing phase change material in the pore proximate the piezoelectric material, and forming a top electrode over the phase change material. Depositing the piezoelectric material in the pore may include conforming the piezoelectric material to at least one wall defining the pore such that the piezoelectric material is deposited between the phase change material and the wall. The conformal deposition may be achieved by chemical vapor deposition (CVD) or by atomic layer deposition (ALD).
    Type: Application
    Filed: July 24, 2013
    Publication date: November 21, 2013
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Catherine A. Dubourdieu, Martin M. Frank, Bipin Rajendran, Alejandro G. Schrott
  • Publication number: 20130299768
    Abstract: Memory cell structures for phase change memory. An example memory cell structure comprising includes a bottom electrode comprised of electrically conducting material, and phase change material disposed above the bottom electrode. A layer of thermally insulating material is disposed, at least partially, between the bottom electrode and the phase change material. The thermally insulating material is comprised of Tantalum Oxide. A top electrode is comprised of electrically conducting material.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 14, 2013
    Applicant: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Roger W. Cheek, Chung H. Lam, Eric A. Joseph, Bipin Rajendran, Alejandro G. Schrott, Yu Zhu
  • Patent number: 8559217
    Abstract: An example embodiment disclosed is a phase change memory cell. The memory cell includes a phase change material and a transducer positioned proximate the phase change material. The phase change material is switchable between at least an amorphous state and a crystalline state. The transducer is configured to activate when the phase change material is changed from the amorphous state to the crystalline state. In a particular embodiment, the transducer is ferroelectric material.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Catherine A. Dubourdieu, Martin M. Frank, Bipin Rajendran, Alejandro G. Schrott
  • Patent number: 8536675
    Abstract: A memory cell structure and method for forming the same. The method includes forming a pore within a dielectric layer. The pore is formed over the center of an electrically conducting bottom electrode. The method includes depositing a thermally insulating layer along at least one sidewall of the pore. The thermally insulating layer isolates heat from phase change current to the volume of the pore. In one embodiment phase change material is deposited within the pore and the volume of the thermally insulating layer. In another embodiment a pore electrode is formed within the pore and the volume of the thermally insulating layer, with the phase change material being deposited above the pore electrode. The method also includes forming an electrically conducting top electrode above the phase change material.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Roger W. Cheek, Eric A. Joseph, Chung H. Lam, Bipin Rajendran, Alejandro G. Schrott, Yu Zhu
  • Patent number: 8471236
    Abstract: A phase change memory cell having a flat lower bottom electrode and a method for fabricating the same. The method includes forming a dielectric layer over a substrate including an array of conductive contacts, patterning, a via having a low aspect ratio such that a depth of the via is less than a width thereof, to a contact surface of the substrate corresponding to each of the array of conductive contacts to be connected to access circuitry, etching the dielectric layer and depositing electrode material over the etched dielectric layer and within each via, and planarizing the electrode material to form a plurality of lower bottom electrodes on each of the conductive contacts.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: June 25, 2013
    Assignees: International Business Machines Corporation, Macronix International Co., Ltd.
    Inventors: Matthew J. Breitwisch, Eric A. Joseph, Chung H. Lam, Hsiang-Lan Lung, Alejandro G. Schrott
  • Patent number: 8466006
    Abstract: A memory cell structure and method for forming the same. The method includes forming a pore within a dielectric layer. The pore is formed over the center of an electrically conducting bottom electrode. The method includes depositing a thermally insulating layer along at least one sidewall of the pore. The thermally insulating layer isolates heat from phase change current to the volume of the pore. In one embodiment phase change material is deposited within the pore and the volume of the thermally insulating layer. In another embodiment a pore electrode is formed within the pore and the volume of the thermally insulating layer, with the phase change material being deposited above the pore electrode. The method also includes forming an electrically conducting top electrode above the phase change material.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: June 18, 2013
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Roger W. Cheek, Eric A. Joseph, Chung H. Lam, Bipin Rajendran, Alejandro G. Schrott, Yu Zhu
  • Patent number: 8445313
    Abstract: A method of forming bit line aligned to a phase change material that includes forming a pedestal of a sacrificial material on a portion of a lower electrode and forming at least one dielectric material adjacent to the sacrificial material, wherein the at least one dielectric material has an upper surface substantially coplanar with an upper surface of the pedestal of the sacrificial material. The pedestal of the sacrificial material is removed selective to the at least one dielectric material and the lower electrode to provide an opening to an exposed surface of the lower electrode. A phase change material is formed on the exposed surface of the lower electrode, and the opening is filled with a conductive fill material. A self-aligned etch back process is also provided.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: May 21, 2013
    Assignees: International Business Machines Corporatoin, Macronix International Co., Ltd.
    Inventors: Matthew J. Breitwisch, Chieh-Fang Chen, Shih-Hung Chen, Eric A. Joseph, Chung Hon Lam, Michael F. Lofaro, Hsiang-Lan Lung, Alejandro G. Schrott, Min Yang
  • Publication number: 20130087756
    Abstract: A memory cell structure and method to form such structure. An example memory cell includes a bottom electrode formed within a substrate. The memory cell also includes a phase change memory element in contact with the bottom electrode. The memory cell includes a liner laterally surrounding the phase change memory element. The liner includes dielectric material that is thermally conductive and electrically insulating. The memory cell includes an insulating dielectric layer laterally surrounding the liner. The insulating dielectric layer includes material having a lower thermal conductivity than that of the liner.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Applicant: International Business Machines Corporation
    Inventors: Eric A. Joseph, Chung H. Lam, Son V. Nguyen, Alejandro G. Schrott
  • Patent number: 8383501
    Abstract: Vertical field effect transistor semiconductor structures and methods for fabrication of the vertical field effect transistor semiconductor structures provide an array of semiconductor pillars. Each vertical portion of each semiconductor pillar in the array of semiconductor pillars has a linewidth greater than a separation distance to an adjacent semiconductor pillar. Alternatively, the array may comprise semiconductor pillars with different linewidths, optionally within the context of the foregoing linewidth and separation distance limitations. A method for fabricating the array of semiconductor pillars uses a minimally photolithographically dimensioned pillar mask layer that is annularly augmented with at least one spacer layer prior to being used as an etch mask.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: February 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Chung H. Lam, Alejandro G. Schrott
  • Patent number: 8354659
    Abstract: Techniques for forming a phase change memory cell. An example apparatus includes a substrate and a bottom electrode carried by the substrate. The bottom electrode is a thermal conductor. A phase change layer, including phase change material, is disposed over the bottom electrode. A thermal insulating layer is disposed above the phase change layer. A heater is configured to temporarily melt the phase change material such that the phase change material crystallizes without voids within a switching region after melting.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Chung H. Lam, Stephen M. Rossnagel, Alejandro G. Schrott
  • Publication number: 20130001500
    Abstract: A method of manufacturing an electrode is provided that includes providing a pillar of a first phase change material atop a conductive structure of a dielectric layer; or the inverted structure; forming an insulating material atop dielectric layer and adjacent the pillar, wherein an upper surface of the first insulating material is coplanar with an upper surface of the pillar; recessing the upper surface of the pillar below the upper surface of the insulating material to provide a recessed cavity; and forming a second phase change material atop the recessed cavity and the upper surface of the insulating material, wherein the second phase change material has a greater phase resistivity than the first phase change material.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alejandro G. Schrott, Chung H. Lam, Eric A. Joseph, Matthew J. Breitwisch, Roger W. Cheek