Patents by Inventor Aleksandar Aleksov

Aleksandar Aleksov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230096368
    Abstract: An inductor structure, a package substrate, an integrated circuit device, an integrated circuit device assembly and a method of fabricating the inductor structure. The inductor structure includes: an electrically conductive body; and a magnetic structure including a non-electrically-conductive magnetic material, wherein: one of the magnetic structure or the electrically conductive body wraps around another one of the magnetic structure or the electrically conductive body to form the inductor structure therewith; and at least one of the electrically conductive body or the magnetic structure has a granular microstructure including randomly distributed particles presenting substantially non-linear particle-to-particle boundaries with one another.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Aleksandar Aleksov, Adel Elsherbini, Johanna Swan, Feras Eid, Thomas L. Sounart, Henning Braunisch, Beomseok Choi, Krishna Bharath, Kaladhar Radhakrishnan, William J. Lambert
  • Publication number: 20230094686
    Abstract: Glass layers having partially embedded conductive layers for power delivery in semiconductor packages and related methods are disclosed. An example semiconductor package includes a core layer having a thickness between a first surface opposite a second surface. The core layer includes a trench provided in the first surface. The trench partially extending between the first surface and the second surface. An electrically conductive material is positioned in the trench. A trace is provided on the conductive material. The trace is offset in a direction away from the first surface and away from the second surface of the core layer.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Kristof Darmawikarta, Srinivas V. Pietambaram, Aleksandar Aleksov
  • Publication number: 20230098020
    Abstract: Technologies for cooling conformal power delivery structures are disclosed. In one embodiment, an integrated circuit component has a die with a backside power plane mated to it. A lid of the integrated circuit component is mated with the backside power plane, forming a sealed cavity. The lid has an inlet and an outlet, and a channel is defined in the lid for liquid coolant to flow from the inlet, across the backside power plane, and to the outlet. The liquid coolant directly contacts the backside power plane, efficiently removing heat from the backside power plane.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Feras Eid, Aleksandar Aleksov, Henning Braunisch, Adel Elsherbini, Thomas L. Sounart, Johanna Swan
  • Publication number: 20230098710
    Abstract: Technologies for high throughput additive manufacturing (HTAM) structures are disclosed. In one embodiment, a sacrificial dielectric is formed to provide a negative mask on which to pattern a conductive trace using HTAM. In another embodiment, a permanent dielectric is patterned using a processing such as laser project patterning. A conductive trace can then be patterned using HTAM. In yet another embodiment, conductive traces with tapered sidewalls can be patterned, and then a buffer layer and HTAM layer can be deposited on top.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Yoshihiro Tomita, Aleksandar Aleksov, Feras Eid, Adel Elsherbini, Wenhao Li, Stephen Morein
  • Publication number: 20230095608
    Abstract: A embedded passive structure, a microelectronic system, and an integrated circuit device assembly, and a method of forming the embedded passive structure. The embedded passive structure includes a base layer; a passive device attached to the base layer; a first power plane comprising metal and adjacent an upper surface of the base layer, the first power plane having a portion electrically coupled to a terminal of the passive device, wherein an upper surface of a combination of the first power plane and the passive device defines a recess; a second power plane comprising metal, the second power plane at least partially within the recess and having a lower surface that conforms with the upper surface of the combination; and a liner including a dielectric layer between the first power plane and the second power plane.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Adel Elsherbini, Aleksandar Aleksov, Feras Eid, Henning Braunisch, Thomas L. Sounart, Johanna Swan, Beomseok Choi, Krishna Bharath, William J. Lambert, Kaladhar Radhakrishnan
  • Publication number: 20230095654
    Abstract: In one embodiment, a conformal power delivery structure includes a first electrically conductive layer comprising metal. The first electrically conductive layer defines one or more recesses, and the conformal power delivery structure also includes a second electrically conductive layer comprising metal that is at least partially within the recesses of the first electrically conductive layer. The second electrically conductive layer has a lower surface that generally conforms with the upper surface of the first electrically conductive layer. The conformal power delivery structure further includes a dielectric material between the surfaces of the first electrically conductive layer and the second electrically conductive layer that conform with one another.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Adel Elsherbini, Feras Eid, Stephen Morein, Krishna Bharath, Henning Braunisch, Beomseok Choi, Brandon M. Rawlings, Thomas L. Sounart, Johanna Swan, Yoshihiro Tomita, Aleksandar Aleksov
  • Publication number: 20230094979
    Abstract: Technologies for conformal power delivery structures near high-speed signal traces are disclosed. In one embodiment, a dielectric layer may be used to keep a power delivery structure spaced apart from high-speed signal traces, preventing deterioration of signals on the high-speed signal traces due to capacitive coupling to the power delivery structure.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Aleksandar Aleksov, Henning Braunisch, Feras Eid, Adel Elsherbini, Stephen Morein, Yoshihiro Tomita, Thomas L. Sounart, Johanna Swan, Brandon M. Rawlings
  • Publication number: 20230099827
    Abstract: Technologies for high throughput additive manufacturing (HTAM) structures are disclosed. In one embodiment, a sacrificial dielectric is formed to provide a negative mask on which to pattern a conductive trace using HTAM. In another embodiment, a permanent dielectric is patterned using a processing such as laser project patterning. A conductive trace can then be patterned using HTAM. In yet another embodiment, conductive traces with tapered sidewalls can be patterned, and then a buffer layer and HTAM layer can be deposited on top.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Adel Elsherbini, Aleksandar Aleksov, Feras Eid, Wenhao Li, Stephen Morein, Yoshihiro Tomita
  • Publication number: 20230095846
    Abstract: Glass substrates having transverse capacitors for use with semiconductor packages and related methods are disclosed. An example semiconductor package includes a glass substrate having a through glass via between a first surface and a second surface opposite the first surface. A transverse capacitor is located in the through glass via. The transverse capacitor includes a dielectric material positioned in a first portion of the through glass via, a first barrier/seed layer positioned in a second portion of the through glass via, and a first conductive material positioned in a third portion of the through glass via.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Benjamin T. Duong, Srinivas V. Pietambaram, Aleksandar Aleksov, Helme Castro De La Torre, Kristof Darmawikarta, Darko Grujicic, Sashi S. Kandanur, Suddhasattwa Nad, Rengarajan Shanmugam, Thomas I. Sounart, Marcel A. Wall
  • Publication number: 20230098957
    Abstract: A conformal power delivery structure, a three-dimensional (3D) stacked die assembly, a system including the 3D stacked die assembly, and a method of forming the conformal power delivery structure. The power delivery structure includes a package substrate, a die adjacent to and electrically coupled to the package substrate; a first power plane adjacent the upper surface of the package substrate and electrically coupled thereto; a second power plane at least partially within recesses defined by the first power plane and having a lower surface that conforms with the upper surface of the first power plane; and a dielectric material between the first power plane and the second power plane.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: INTEL CORPORATION
    Inventors: Feras Eid, Aleksandar Aleksov, Adel Elsherbini, Henning Braunisch
  • Publication number: 20230095063
    Abstract: In one embodiment, an apparatus includes a first die with voltage regulator circuitry and a second die with logic circuitry. The apparatus further includes an inductor, a capacitor, and a conformal power delivery structure on the top side of the apparatus, where the voltage regulator circuitry is connected to the logic circuitry through the inductor, the capacitor, and the conformal power delivery structure. The conformal power delivery structure includes a first electrically conductive layer defining one or more recesses, a second electrically conductive layer at least partially within the recesses of the first electrically conductive layer and having a lower surface that generally conforms with the upper surface of the first electrically conductive layer, and a dielectric material between the surfaces of the first electrically conductive layer and the second electrically conductive layer that conform with one another.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Beomseok Choi, William J. Lambert, Krishna Bharath, Kaladhar Radhakrishnan, Adel Elsherbini, Henning Braunisch, Stephen Morein, Aleksandar Aleksov, Feras Eid
  • Publication number: 20230099632
    Abstract: Embodiments disclosed herein include disaggregated die modules. In an embodiment, a disaggregated die module comprises a plurality of core logic blocks. In an embodiment, the disaggregated die module further comprises a first IO interface, where the first IO interface is adjacent to an edge of the disaggregated die module, and a second IO interface, where the second IO interface is set away from the edge of the disaggregated die module.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Andrew COLLINS, Srinivas V. PIETAMBARAM, Tarek A. IBRAHIM, Aleksandar ALEKSOV, Telesphor KAMGAING
  • Publication number: 20230093438
    Abstract: Embodiments disclosed herein include electronic packages and methods of forming such electronic packages. In an embodiment, an electronic package comprises a first layer, where the first layer comprises glass. In an embodiment, a second layer is over the first layer, where the second layer comprises a mold material. In an embodiment, a first photonics integrated circuit (PIC) is within the second layer. In an embodiment, a second PIC is within the second layer, and a waveguide is in the first layer. In an embodiment, the waveguide optically couples the first PIC to the second PIC.
    Type: Application
    Filed: September 21, 2021
    Publication date: March 23, 2023
    Inventors: Benjamin DUONG, Kristof DARMAWIKARTA, Srinivas V. PIETAMBARAM, Darko GRUJICIC, Bai NIE, Tarek A. IBRAHIM, Ankur AGRAWAL, Sandeep GAAN, Ravindranath V. MAHAJAN, Aleksandar ALEKSOV
  • Publication number: 20230091666
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques directed to embedding capacitors in through glass vias within a glass core of a substrate. In embodiments, the through glass vias may extend entirely from a first side of the glass core to a second side of the glass core opposite the first side. Layers of electrically conductive material and dielectric material may then be deposited within the through glass via to form a capacitor. the capacitor may then be electrically coupled with electrical routings on buildup layers on either side of the glass core. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Inventors: Benjamin DUONG, Aleksandar ALEKSOV, Helme A. CASTRO DE LA TORRE, Kristof DARMAWIKARTA, Darko GRUJICIC, Sashi S. KANDANUR, Suddhasattwa NAD, Srinivas V. PIETAMBARAM, Rengarajan SHANMUGAM, Thomas L. SOUNART, Marcel WALL
  • Publication number: 20230093008
    Abstract: Techniques for self-assembly of regions in a dielectric layer with different electrical properties are described herein. In one example, a package includes a substrate, a layer of dielectric material over the substrate, the layer of dielectric material including a filler material. The package includes a plurality of conductive traces in the layer of dielectric material, and a filler-depleted radial region of the dielectric material around each of the plurality of conductive traces. The filler-depleted radial region has a lower volume-percentage of filler than other regions of the layer of dielectric material. In one example, the conductive traces, filler, or both include a coating to cause the filler and traces to have opposing surface chemistry.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Inventors: Brandon C. MARIN, Aleksandar ALEKSOV, Jeremy D. ECTON
  • Publication number: 20230084379
    Abstract: Disclosed herein are local bridge-last architectures for heterogeneous integration applications and methods for manufacturing the same. The local bridge-last architectures may include a substrate, a first die, a second die, and a material. The substrate may define a cavity. The first and second dies may be connected to the substrate. The material may be attached to the substrate. The material may include a first portion and a second portion. The first portion of the material may be located proximate the first bump and the second portion of the material may be located proximate the second bump.
    Type: Application
    Filed: September 10, 2021
    Publication date: March 16, 2023
    Inventors: Gang Duan, Srinivas Venkata Ramanuja Pietambaram, Aleksandar Aleksov, Tarek Ibrahim
  • Publication number: 20230077486
    Abstract: Embodiments disclosed herein include a package substrate. In an embodiment, the package substrate comprises a core with a first surface and a second surface, where the core comprises glass. In an embodiment, a first via is through the core, where the first via comprise a conductive material, and a film over the first surface of the core, where the film is an adhesive. In an embodiment, a second via is through the film, where the second via comprises a conductive material, where the second via contacts the first via. In an embodiment, a centerline of the second via is aligned with a centerline of the first via. In an embodiment, a buildup layer is over the film.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 16, 2023
    Inventors: Jeremy D. ECTON, Brandon C. MARIN, Aleksandar ALEKSOV, Srinivas V. PIETAMBARAM, Leonel ARANA
  • Patent number: 11605867
    Abstract: A method of fabricating an RF filter on a semiconductor package comprises forming a first dielectric buildup film. A second dielectric buildup film is formed over the first dielectric buildup film, the second dielectric buildup film comprising a dielectric material that contains a metallization catalyst, wherein the dielectric material comprises one of an epoxy-polymer blend dielectric material, silicon dioxide and silicon nitride, and a low-k dielectric. A trench is formed in the second dielectric buildup film with laser ablation, wherein the laser ablation selectively activates sidewalls of the trench for electroless metal deposition. A metal selectively is plated to sidewalls of the trench based at least in part on the metallization catalyst and immersion in an electroless solution. A low-loss buildup film is formed over the metal that substantially fills the trench.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: March 14, 2023
    Assignee: Intel Corporation
    Inventors: Brandon C. Marin, Jeremy D. Ecton, Aleksandar Aleksov, Kristof Darmawikarta, Yonggang Li, Dilan Seneviratne
  • Patent number: 11605603
    Abstract: Embodiments may relate to a microelectronic package that includes a radio frequency (RF) chip coupled with a die by interconnects with a first pitch. The RF chip may further be coupled with a waveguide of a package substrate by interconnects with a second pitch that is different than the first pitch. The RF chip may facilitate conveyance of data to the waveguide as an electromagnetic signal with a frequency greater than approximately 20 gigahertz (GHz). Other embodiments may be described or claimed.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: March 14, 2023
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Georgios Dogiamis, Telesphor Kamgaing, Henning Braunisch, Johanna M. Swan, Shawna M. Liff, Aleksandar Aleksov
  • Publication number: 20230027030
    Abstract: A patch structure of an integrated circuit package comprises a core having a first side facing downwards and a second side facing upwards. A first solder resist (SR) layer is formed on the first side of the core, wherein the first SR layer comprises a first layer interconnect (FLI) and has a first set of one or more microbumps thereon to bond to one or more logic die. A second solder resist (SR) layer is formed on the second side of the core, wherein the second SR layer has a second set of one or more microbumps thereon to bond with a substrate. One or more bridge dies includes a respective sets of bumps, wherein the one or more bridge dies is disposed flipped over within the core such that the respective sets of bumps face downward and connect to the first set of one or more microbumps in the FLI.
    Type: Application
    Filed: September 30, 2022
    Publication date: January 26, 2023
    Inventors: Changhua LIU, Xiaoying GUO, Aleksandar ALEKSOV, Steve S. CHO, Leonel ARANA, Robert MAY, Gang DUAN