Patents by Inventor Aleksandr Andreevich LASH

Aleksandr Andreevich LASH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240121878
    Abstract: A laser produced plasma (LPP) light source comprises a rotating target assembly supplying a target into an interaction zone with a focused beam of a high-repetition-rate pulsed laser. High effective cooling of the light source is provided by thermal radiation of a peripheral part of the rotating target assembly and through a meander-shaped gap between the rotating target assembly and a fixed heat exchanger with a gas blowing through the slit gap. In an embodiment, a sealing between the vacuum chamber and a shaft of rotating drive unit is provided by a magnetic fluid seal (MFS) with an additional heat exchanger. A heat transfer from the rotating target assembly is provided through the shaft and MFS to additional heat exchanger and by convection air cooling of a counterweight of the rotating target assembly fixed on the shaft. High brightness and high output power of LPP light source are provided.
    Type: Application
    Filed: November 27, 2023
    Publication date: April 11, 2024
    Inventors: Aleksandr Yurievich VINOKHODOV, Vladimir Vitalievich IVANOV, Konstantin Nikolaevich KOSHELEV, Mikhail Sergeyevich KRIVOKORYTOV, Vladimir Mikhailovich KRIVTSUN, Aleksandr Andreevich LASH, Vyacheslav Valerievich MEDVEDEV, Yury Viktorovich SIDELNIKOV, Oleg Feliksovich YAKUSHEV, Denis Alexandrovich GLUSHKOV, Samir ELLWI, Oleg Borisovich KHRISTOFOROV
  • Patent number: 11875986
    Abstract: The light source contains a gas-filled chamber with a plasma sustained by a focused beam of a continuous wave laser. The means for plasma ignition is a solid-state laser system which generates two pulsed laser beams: in a free running mode and in a Q-switched mode. The solid-state laser system contains single active element and its optical cavity is equipped with a Q-switch overlapping only part of a cross section of the intracavity laser beam. One pulsed laser beam provides an optical breakdown after which another pulsed laser beam ignites the plasma, the volume and density of which are sufficient for stationary sustenance of the plasma by the focused beam of the continuous wave laser. EFFECT: simplification of the design of the light source, increase of its reliability and ease of use, creating on this basis of powerful electrode-free high-brightness broadband light sources with high spatial and energy stability.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: January 16, 2024
    Assignees: ISTEQ B.V., ISTEQ GROUP HOLDING B.V.
    Inventors: Dmitriy Borisovich Abramenko, Robert Rafilevich Gayasov, Denis Alexandrovich Glushkov, Yurii Borisovich Kiryukhin, Vladimir Mikhailovich Krivtsun, Aleksandr Andreevich Lash
  • Patent number: 11869742
    Abstract: An X-ray beam is generated in an interaction zone of an electron beam and a target, the zone being an annular layer of a molten fusible metal in an annular channel of a rotating anode assembly. The channel has a surface profile which prevents slopping of the molten metal in the radial direction and in both directions along the rotation axis. The liquid-metal target forms a circular cylindrical surface due to the centrifugal force acting thereupon. The linear velocity of the target is preferably higher than 80 m/s; in a vacuum chamber, a changeable membrane made of carbon nanotubes is installed in the X-ray beam path and a protective screen with apertures for electron beam entry and X-ray beam exit is arranged around the interaction zone. The technical result consists in an X-ray source with increased power, brightness, lifetime and ease of use.
    Type: Grant
    Filed: April 26, 2020
    Date of Patent: January 9, 2024
    Assignees: ISTEQ B.V., ISTEQ GROUP HOLDING B.V.
    Inventors: Aleksandr Yurievich Vinokhodov, Vladimir Vitalievich Ivanov, Konstantin Nikolaevich Koshelev, Mikhail Sergeyevich Krivokorytov, Vladimir Mikhailovich Krivtsun, Aleksandr Andreevich Lash, Vyacheslav Valerievich Medvedev, Yury Viktorovich Sidelnikov, Oleg Feliksovich Yakushev, Denis Alexandrovich Glushkov, Samir Ellwi, Oleg Borisovich Khristoforov
  • Publication number: 20230052481
    Abstract: The light source contains a gas-filled chamber with a plasma sustained by a focused beam of a continuous wave laser. The means for plasma ignition is a solid-state laser system which generates two pulsed laser beams: in a free running mode and in a Q-switched mode. The solid-state laser system contains single active element and its optical cavity is equipped with a Q-switch overlapping only part of a cross section of the intracavity laser beam. One pulsed laser beam provides an optical breakdown after which another pulsed laser beam ignites the plasma, the volume and density of which are sufficient for stationary sustanance of the plasma by the focused beam of the continuous wave laser. EFFECT: simplification of the design of the light source, increase of its reliability and ease of use, creating on this basis of powerful electrode-free high-brightness broadband light sources with high spatial and energy stability.
    Type: Application
    Filed: October 7, 2022
    Publication date: February 16, 2023
    Inventors: Dmitriy Borisovich ABRAMENKO, Robert Rafilevich GAYASOV, Denis Alexandrovich GLUSHKOV, Yurii Borisovich KIRYUKHIN, Vladimir Mikhailovich KRIVTSUN, Aleksandr Andreevich LASH
  • Patent number: 11503696
    Abstract: A light source with radiating plasma sustained in the gas-filled chamber by a focused beam of CW laser. The gas is inert gas with a purity of at least 99.99%. The chamber contains a metal housing with at least one window made of MgF2 for outputting a plasma radiation. Each window is located in a hole of the housing on the end of a sleeve and is soldered to the sleeve by means of glass cement, and each sleeve is welded to the hole of the metal housing on the outside seam. The sleeves and the housing are made of an alloy with a coefficient of linear thermal expansion (CLTE), matched with the CLTE of the MgF2 crystal in the direction perpendicular to the optical axis of the MgF2 crystal. The technical result consists in expanding the radiation spectrum of the light source into the VUV region.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: November 15, 2022
    Assignees: RnD-ISAN, Ltd, Isteq B.V.
    Inventors: Dmitriy Borisovich Abramenko, Yurii Borisovich Kiryukhin, Denis Alexandrovich Glushkov, Vladimir Mikhailovich Krivtsun, Aleksandr Andreevich Lash
  • Publication number: 20220310351
    Abstract: An X-ray beam is generated in an interaction zone of an electron beam and a target, the zone being an annular layer of a molten fusible metal in an annular channel of a rotating anode assembly. The channel has a surface profile which prevents slopping of the molten metal in the radial direction and in both directions along the rotation axis. The liquid-metal target forms a circular cylindrical surface due to the centrifugal force acting thereupon. The linear velocity of the target is preferably higher than 80 m/s; in a vacuum chamber, a changeable membrane made of carbon nanotubes is installed in the X-ray beam path and a protective screen with apertures for electron beam entry and X-ray beam exit is arranged around the interaction zone. The technical result consists in an X-ray source with increased power, brightness, lifetime and ease of use.
    Type: Application
    Filed: April 26, 2020
    Publication date: September 29, 2022
    Inventors: Aleksandr Yurievich VINOKHODOV, Vladimir Vitalievich IVANOV, Konstantin Nikolaevich KOSHELEV, Mikhail Sergeyevich KRIVOKORYTOV, Vladimir Mikhailovich KRIVTSUN, Aleksandr Andreevich LASH, Vyacheslav Valerievich MEDVEDEV, Yury Viktorovich SIDELNIKOV, Oleg Feliksovich YAKUSHEV, Denis Alexandrovich GLUSHKOV, Samir ELLWI, Oleg Borisovich KHRISTOFOROV
  • Publication number: 20220132647
    Abstract: A laser produced plasma light source comprises a vacuum chamber with a rotating target assembly supplying a target into an interaction zone with focused laser beam. The target is layer of a fluid and/or free-flowing target material on a surface of annular groove in the rotating target assembly. An output beam of short-wavelength radiation exits the interaction zone to an optical collector through the means for debris mitigation. A linear velocity of the target is not less than 100 m/s and a vector of the linear velocity of the target in the interaction zone is directed on one side of a plane passing through the interaction zone and the rotation axis while the focused laser beam and the output beam are located on another side of said plane. The optical collector comprises two ellipsoidal mirror units arranged in a tandem.
    Type: Application
    Filed: January 6, 2022
    Publication date: April 28, 2022
    Inventors: Samir ELLWI, Denis Aleksandrovich GLUSHKOV, Vladimir Vitalievich IVANOV, Oleg Borisovich KHRISTOFOROV, Konstantin Nikolaevich KOSHELEV, Mikhail Sergeyevich KRIVOKORYTOV, Vladimir Mikhailovich KRIVTSUN, Aleksandr Andreevich LASH, Vyacheslav Valerievich MEDVEDEV, Aleksandr Yurievich VINOKHODOV
  • Publication number: 20220053627
    Abstract: A light source with radiating plasma sustained in the gas-filled chamber by a focused beam of CW laser. The gas is inert gas with a purity of at least 99.99%. The chamber contains a metal housing with at least one window made of MgF2 for outputting a plasma radiation. Each window is located in a hole of the housing on the end of a sleeve and is soldered to the sleeve by means of glass cement, and each sleeve is welded to the hole of the metal housing on the outside seam. The sleeves and the housing are made of an alloy with a coefficient of linear thermal expansion (CLTE), matched with the CLTE of the MgF2 crystal in the direction perpendicular to the optical axis of the MgF2 crystal. The technical result consists in expanding the radiation spectrum of the light source into the VUV region.
    Type: Application
    Filed: October 29, 2021
    Publication date: February 17, 2022
    Inventors: Dmitriy Borisovich ABRAMENKO, Robert Rafilevich GAYASOV, Denis Alexandrovich GLUSHKOV, Vladimir Mikhailovich KRIVTSUN, Aleksandr Andreevich LASH
  • Patent number: 11252810
    Abstract: A radiation source contains a collector module comprising an optical collector, positioned in a vacuum chamber with an emitting plasma, further comprising a means for debris mitigation which include at least two casings arranged to output debris-free homocentric beams of the short-wavelength radiation, coming to the optical collector preferably consisting of several identical mirrors. Outside each casing there are permanent magnets that create a magnetic field inside the casings to mitigate charged fraction of debris particles and provide the debris-free homocentric beams of short-wavelength radiation. Other debris mitigating techniques are additionally used. Preferably the plasma is laser-produced plasma of a liquid metal target supplied by a rotating target assembly to a focus area of a laser beam. The technical result of the invention is the creation of high-powerful high-brightness debris-free sources of short-wavelength radiation with large, preferably more than 0.25 sr, collection solid angle.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: February 15, 2022
    Assignees: Isteq B.V., RnD-ISAN. Ltd
    Inventors: Vladimir Vitalievich Ivanov, Aleksandr Yurievich Vinokhodov, Konstantin Nikolaevich Koshelev, Mikhail Sergeyevich Krivokorytov, Vladimir Mikhailovich Krivtsun, Aleksandr Andreevich Lash, Vyacheslav Valerievich Medvedev, Yury Viktorovich Sidelnikov, Oleg Feliksovich Yakushev, Oleg Borisovich Khristoforov, Denis Aleksandrovich Glushkov, Samir Ellwi
  • Patent number: 11191147
    Abstract: The light source contains a chamber with a region of radiating plasma sustained by a focused beam of a CW laser. The chamber consists of a tube, a bottom and a cap. The cap is arranged for filling the chamber with gas. The tube and bottom are made from an optically transparent material. The bottom is arranged for input into the chamber of the CW laser beam and pulsed laser beams used for the plasma ignition, while the tube is arranged for exit of the output beam of plasma radiation. Preferably shape of the tube is arranged for reducing aberrations which distort a path of rays of plasma radiation passing through the tube wall. The technical result consists in creating electrodeless high-brightness broadband light sources with the high spatial and power stability, and in providing an ability to collect plasma radiation in a spatial angle of more than 9 sr.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: November 30, 2021
    Assignees: RnD-ISAN, Ltd, ISTEQ B.V.
    Inventors: Dmitriy Borisovich Abramenko, Robert Rafilevich Gayasov, Denis Alexandrovich Glushkov, Vladimir Mikhailovich Krivtsun, Aleksandr Andreevich Lash
  • Publication number: 20210282256
    Abstract: The light source contains a chamber with a region of radiating plasma sustained by a focused beam of a CW laser. The chamber consists of a tube, a bottom and a cap. The cap is arranged for filling the chamber with gas. The tube and bottom are made from an optically transparent material. The bottom is arranged for input into the chamber of the CW laser beam and pulsed laser beams used for the plasma ignition, while the tube is arranged for exit of the output beam of plasma radiation. Preferably shape of the tube is arranged for reducing aberrations which distort a path of rays of plasma radiation passing through the tube wall. The technical result consists in creating electrodeless high-brightness broadband light sources with the high spatial and power stability, and in providing an ability to collect plasma radiation in a spatial angle of more than 9 sr.
    Type: Application
    Filed: February 19, 2021
    Publication date: September 9, 2021
    Inventors: Dmitriy Borisovich ABRAMENKO, Robert Rafilevich GAYASOV, Denis Alexandrovich GLUSHKOV, Vladimir Mikhailovich KRIVTSUN, Aleksandr Andreevich LASH
  • Patent number: 10964523
    Abstract: The invention relates to plasma light sources with a continuous optical discharge (COD). The light source contains a gas filled chamber with a region of radiating plasma sustained by a focused beam of a CW laser. A density of gas particles in the chamber is less than 90·1019 cm?3 and a temperature of the chamber is in a range from 600 to 900 K or optionally higher. Preferably the density of gas particles is as low as possible and the temperature of the inner surface of the chamber at operation is as high as possible under providing a gas pressure in the chamber of about 50 bar or more. The technical result of the invention consists in providing COD sustaining conditions, which are optimal for achieving high stability and high brightness of the radiating plasma, in the creation on this basis of broadband light sources with ultra-high brightness and stability.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: March 30, 2021
    Assignees: RnD-ISAN, Ltd, ISTEQ B.V.
    Inventors: Robert Rafilevich Gayasov, Denis Alexandrovich Glushkov, Yurii Borisovich Kiryukhin, Vladimir Mikhailovich Krivtsun, Aleksandr Andreevich Lash
  • Publication number: 20210092824
    Abstract: A radiation source contains a collector module comprising an optical collector, positioned in a vacuum chamber with an emitting plasma, further comprising a means for debris mitigation which include at least two casings arranged to output debris-free homocentric beams of the short-wavelength radiation, coming to the optical collector preferably consisting of several identical mirrors. Outside each casing there are permanent magnets that create a magnetic field inside the casings to mitigate charged fraction of debris particles and provide the debris-free homocentric beams of short-wavelength radiation. Other debris mitigating techniques are additionally used. Preferably the plasma is laser-produced plasma of a liquid metal target supplied by a rotating target assembly to a focus area of a laser beam. The technical result of the invention is the creation of high-powerful high-brightness debris-free sources of short-wavelength radiation with large, preferably more than 0.25 sr, collection solid angle.
    Type: Application
    Filed: November 19, 2020
    Publication date: March 25, 2021
    Inventors: Vladimir Vitalievich IVANOV, Aleksandr Yurievich VINOKHODOV, Konstantin Nikolaevich KOSHELEV, Mikhail Sergeyevich KRIVOKORYTOV, Vladimir Mikhailovich KRIVTSUN, Aleksandr Andreevich LASH, Vyacheslav Valerievich MEDVEDEV, Yury Viktorovich SIDELNIKOV, Oleg Feliksovich YAKUSHEV, Oleg Borisovich KHRISTOFOROV, Denis Aleksandrovich GLUSHKOV, Samir ELLWI
  • Patent number: 10887973
    Abstract: Laser-produced plasma light source contains a vacuum chamber with a rotating target assembly providing a target in an interaction zone with a laser beam focused on the said target, which is a molten metal layer. A debris shield is rigidly mounted to surround the interaction zone, said shield comprising only two opening forming an entrance for the laser beam and an exit for a short-wavelength radiation beam. The means for debris mitigation can additionally include: the rotation of target with high linear velocity exciding 80 m/s; the orientation of the short-wavelength radiation beam and/or of the laser beam at an angle of less than 45° to the target surface, a nozzle supplying a high-speed gas flow to the interaction zone, etc. The technical result is the creation of the high-brightness low-debris sources of soft X-ray, EUV and VUV light at wavelengths of 0.4 to 200 nm.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: January 5, 2021
    Assignees: ISTEQ B.V., RnD-ISAN, Ltd
    Inventors: Vladimir Vitalievich Ivanov, Aleksandr Yurievich Vinokhodov, Konstantin Nikolaevich Koshelev, Mikhail Sergeyevich Krivokorytov, Vladimir Mikhailovich Krivtsun, Aleksandr Andreevich Lash, Vyacheslav Valerievich Medvedev, Yury Viktorovich Sidelnikov, Oleg Feliksovich Yakushev, Oleg Borisovich Khristoforov, Denis Aleksandrovich Glushkov, Samir Ellwi
  • Patent number: 10770282
    Abstract: The light source contains a gas filled chamber with a region of radiating plasma sustained by a focused beam of a CW laser. The means for plasma ignition is a pulsed laser system generating a first and a second laser beams focused in the chamber. The first laser beam provides the optical breakdown, after which the second laser beam ignites the plasma, whose volume and density are sufficient for stationary plasma sustenance by CW laser after finishing the second laser pulse. Preferably, the first laser beam is generated in Q-switching mode and the second laser beam is generated in free-running mode. The technical result consists in ensuring high reliability of igniting the plasma, in creating in this basis electrodeless high-brightness broadband light sources with the high spatial and power stability, and in providing an ability to collect broadband plasma radiation in a spatial angle of more than 9 sr.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: September 8, 2020
    Assignee: RnD-ISAN, Ltd
    Inventors: Dmitry Borisovich Abramenko, Robert Rafilevich Gayasov, Yurii Borisovich Kiryukhin, Vladimir Mikhailovich Krivtsun, Aleksandr Andreevich Lash
  • Publication number: 20200163197
    Abstract: Laser-produced plasma light source contains a vacuum chamber with a rotating target assembly providing a target in an interaction zone with a laser beam focused on the said target, which is a molten metal layer. A debris shield is rigidly mounted to surround the interaction zone, said shield comprising only two opening forming an entrance for the laser beam and an exit for a short-wavelength radiation beam. The means for debris mitigation can additionally include: the rotation of target with high linear velocity exciding 80 m/s; the orientation of the short-wavelength radiation beam and/or of the laser beam at an angle of less than 45° to the target surface, a nozzle supplying a high-speed gas flow to the interaction zone, etc. The technical result is the creation of the high-brightness low-debris sources of soft X-ray, EUV and VUV light at wavelengths of 0.4 to 200 nm.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventors: Vladimir Vitalievich IVANOV, Aleksandr Yurievich VINOKHODOV, Konstantin Nikolaevich KOSHELEV, Mikhail Sergeyevich KRIVOKORYTOV, Vladimir Mikhailovich KRIVTSUN, Aleksandr Andreevich LASH, Vyacheslav Valerievich MEDVEDEV, Yury Viktorovich SIDELNIKOV, Oleg Feliksovich YAKUSHEV, Oleg Borisovich KHRISTOFOROV, Denis Aleksandrovich GLUSHKOV, Samir ELLWI
  • Patent number: 10638588
    Abstract: High-brightness LPP source and method for generating short-wavelength radiation which include a vacuum chamber (1) with an input window (6) for a laser beam (7) focused into the interaction zone (5), an output window (8) for the exit of the short-wavelength radiation beam (9); the rotating target assembly (3), having an annular groove (11); the target (4) as a layer of a molten metal formed by centrifugal force on the surface of the distal wall (13) of the annular groove (11) while the proximal wall (14) of the annular groove is designed to provide a line of sight between the interaction zone and both the input and output windows particularly during laser pulses. A method for mitigating debris particles comprises using an target orbital velocity high enough for the droplet fractions of the debris particles exiting the rotating target assembly not to be directed towards the input and output windows.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: April 28, 2020
    Assignees: Isteq B.V., RnD-ISAN, Ltd
    Inventors: Aleksandr Yurievich Vinokhodov, Vladimir Vitalievich Ivanov, Konstantin Nikolaevich Koshelev, Mikhail Sergeyevich Krivokorytov, Vladimir Mikhailovich Krivtsun, Aleksandr Andreevich Lash, Vyacheslav Valerievich Medvedev, Yury Viktorovich Sidelnikov, Oleg Feliksovich Yakushev
  • Patent number: 10588210
    Abstract: High-brightness short-wavelength radiation source contains a vacuum chamber with a rotating target assembly having an annular groove, an energy beam focused on the target, a useful short-wavelength radiation beam coming out of the interaction zone, wherein the target is a layer of molten metal formed by a centrifugal force on a surface of the annular groove facing a rotation axis. A replaceable membrane made of carbon nanotubes may be installed on a pathway of the short-wavelength radiation beam for debris mitigation. In the embodiments of the invention the energy beam is a pulsed laser beam. The pulsed laser beam may consist of pre-pulse and main-pulse, with parameters such as laser pulse repetition rate chosen in order to suppress debris. In other embodiments the energy beam is the electron beam produced by an electron gun and the rotating target assembly is a rotating anode.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: March 10, 2020
    Assignees: Isteq B.V., RnD-ISAN, Ltd
    Inventors: Aleksandr Yurievich Vinokhodov, Vladimir Vitalievich Ivanov, Konstantin Nikolaevich Koshelev, Mikhail Sergeyevich Krivokorytov, Vladimir Mikhailovich Krivtsun, Aleksandr Andreevich Lash, Vyacheslav Valerievich Medvedev, Yury Viktorovich Sidelnikov, Oleg Feliksovich Yakushev, Oleg Borisovich Khristoforov, Denis Aleksandrovich Glushkov, Samir Ellwi
  • Publication number: 20200060014
    Abstract: High-brightness short-wavelength radiation source contains a vacuum chamber with a rotating target assembly having an annular groove, an energy beam focused on the target, a useful short-wavelength radiation beam coming out of the interaction zone, wherein the target is a layer of molten metal formed by a centrifugal force on a surface of the annular groove facing a rotation axis. A replaceable membrane made of carbon nanotubes may be installed on a pathway of the short-wavelength radiation beam for debris mitigation. In the embodiments of the invention the energy beam is a pulsed laser beam. The pulsed laser beam may consist of pre-pulse and main-pulse, with parameters such as laser pulse repetition rate chosen in order to suppress debris. In other embodiments the energy beam is the electron beam produced by an electron gun and the rotating target assembly is a rotating anode.
    Type: Application
    Filed: August 8, 2019
    Publication date: February 20, 2020
    Inventors: Aleksandr Yurievich VINOKHODOV, Vladimir Vitalievich IVANOV, Konstantin Nikolaevich KOSHELEV, Mikhail Sergeyevich KRYVOKORYTOV, Vladimir Mikhailovich KRIVTSUN, Aleksandr Andreevich LASH, Vyacheslav Valerievich MEDVEDEV, Yury Viktorovich SIDELNIKOV, Oleg Feliksovich YAKUSHEV, Oleg Borisovich KHRISTOFOROV, Denis Aleksandrovich GLUSHKOV, Samir ELLWI
  • Publication number: 20190166679
    Abstract: High-brightness LPP source and method for generating short-wavelength radiation which include a vacuum chamber (1) with an input window (6) for a laser beam (7) focused into the interaction zone (5), an output window (8) for the exit of the short-wavelength radiation beam (9); the rotating target assembly (3), having an annular groove (11); the target (4) as a layer of a molten metal formed by centrifugal force on the surface of the distal wall (13) of the annular groove (11) while the proximal wall (14) of the annular groove is designed to provide a line of sight between the interaction zone and both the input and output windows particularly during laser pulses. A method for mitigating debris particles comprises using an target orbital velocity high enough for the droplet fractions of the debris particles exiting the rotating target assembly not to be directed towards the input and output windows.
    Type: Application
    Filed: August 14, 2018
    Publication date: May 30, 2019
    Applicants: Isteq B.V., RnD-ISAN, Ltd
    Inventors: Aleksandr Yurievich VINOKHODOV, Vladimir Vitalievich IVANOV, Konstantin Nikolaevich KOSHELEV, Mikhail Sergeyevich KRYVOKORYTOV, Vladimir Mikhailovich KRIVTSUN, Aleksandr Andreevich LASH, Vyacheslav Valerievich MEDVEDEV, Yury Viktorovich SIDELNIKOV, Oleg Feliksovich YAKUSHEV