Patents by Inventor Alessandro Parisi

Alessandro Parisi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250044409
    Abstract: First signal processing is applied to a first input signal oscillating at an input frequency and a first set of control signals to generate a first output signal oscillating at a multiple of the input frequency with an amplitude controlled by a control signal in the first set of control signals. Second signal processing is applied to a second input signal oscillating in quadrature at the input frequency and a second set of control signals to generate a second output signal that oscillates at the multiple of the input frequency with an amplitude controlled by a control signal in the second set of control signals. A further output signal, generated in response to the first and second output signals, oscillates at the multiple of the input frequency with a phase shift controlled by a ratio of control signal amplitudes for the first and second sets of control signals.
    Type: Application
    Filed: August 1, 2024
    Publication date: February 6, 2025
    Applicant: STMicroelectronics International N.V.
    Inventors: Giuseppe PAPOTTO, Alessandro PARISI, Giuseppe PALMISANO
  • Patent number: 12210089
    Abstract: A flash analog-to-digital converter (ADC) receives an input control signal and performs coarse tuning of a frequency of an output signal, produced between first and second nodes having an inductance coupled therebetween. The flash ADC quantizes an operating frequency range for the output signal produced between the first and second nodes as M·?f, where M is an integer from 0 to N?1, where N is a number of intervals into which a frequency range for the output signal is divided, and where ?f is a resulting frequency step produced by the quantizing. The value of M is generated based upon the input control signal and a word controlling switches of a plurality of switched capacitance circuits associated with the first and second nodes to close ones of those switches associated with the control word to coarsely tune the frequency of the output signal.
    Type: Grant
    Filed: January 21, 2024
    Date of Patent: January 28, 2025
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandro Parisi, Andrea Cavarra, Alessandro Finocchiaro, Giuseppe Papotto, Giuseppe Palmisano
  • Publication number: 20240210550
    Abstract: A circuit includes a phase-frequency-detector generating first and second digital control signals indicative of phase differences between an input reference-signal and an output-signal, a charge-pump generating a control-signal based upon the first and second digital control signals, and an oscillator-circuit. The oscillator-circuit includes an active core coupled between first and second nodes, with a tunable resonant circuit a set of capacitances selectively connected between the first and second nodes, wherein a tap between the first and second variable capacitances receives the control-signal for tuning the tunable resonant circuit. A timer-circuit generates a timing-signal based upon the input reference-signal and a reset-signal.
    Type: Application
    Filed: March 4, 2024
    Publication date: June 27, 2024
    Applicant: STMicroelectronics S.r.l.
    Inventors: Alessandro FINOCCHIARO, Alessandro PARISI, Andrea CAVARRA, Giuseppe PAPOTTO, Giuseppe PALMISANO
  • Publication number: 20240151844
    Abstract: A flash analog-to-digital converter (ADC) receives an input control signal and performs coarse tuning of a frequency of an output signal, produced between first and second nodes having an inductance coupled therebetween. The flash ADC quantizes an operating frequency range for the output signal produced between the first and second nodes as M·?f, where M is an integer from 0 to N?1, where N is a number of intervals into which a frequency range for the output signal is divided, and where ?f is a resulting frequency step produced by the quantizing. The value of M is generated based upon the input control signal and a word controlling switches of a plurality of switched capacitance circuits associated with the first and second nodes to close ones of those switches associated with the control word to coarsely tune the frequency of the output signal.
    Type: Application
    Filed: January 21, 2024
    Publication date: May 9, 2024
    Applicant: STMicroelectronics S.r.l.
    Inventors: Alessandro PARISI, Andrea CAVARRA, Alessandro FINOCCHIARO, Giuseppe PAPOTTO, Giuseppe PALMISANO
  • Patent number: 11959995
    Abstract: A PLL has a tunable resonator including an inductance and variable capacitance coupled between first and second nodes, and capacitances coupleable between the nodes. A control node is coupled to the variable capacitance and receives a control signal for tuning the resonator. A biasing circuit biases the resonator to generate an output. A PFD circuit senses timing offset of the output with respect to a reference and asserts first or second digital signals dependent on the sign of the timing offset. A charge pump generates the control signal based on the first and second digital signals. A timer asserts a timing signal in response to a pulse sensed in a reset signal and de-asserts the timing signal after a time interval. A calibrator couples selected capacitances between the first and second nodes as a function of the second digital signal, in response to assertion of the timing signal.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: April 16, 2024
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandro Finocchiaro, Alessandro Parisi, Andrea Cavarra, Giuseppe Papotto, Giuseppe Palmisano
  • Patent number: 11879963
    Abstract: Disclosed herein is a tunable resonant circuit including an inductance directly electrically connected in series between first and second nodes, a variable capacitance directly electrically connected between the first and second nodes, and a set of switched capacitances coupled between the first and second nodes. The set of switched capacitances includes a plurality of capacitance units, each capacitance unit comprising a first capacitance for that capacitance unit directly electrically connected between the first node and a switch and a second capacitance for the capacitance unit directly electrically connected between the switch and the second node. Control circuitry is configured to receive an input control signal and connected to control the switches of the set of switched capacitances. A biasing circuit is directly electrically connected to the tunable resonance circuit at the first and second nodes.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: January 23, 2024
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandro Parisi, Andrea Cavarra, Alessandro Finocchiaro, Giuseppe Papotto, Giuseppe Palmisano
  • Patent number: 11689156
    Abstract: A voltage controlled oscillator (VCO) includes: a pair of inductors coupled in series; a first pair of varactors coupled in series, and a second pair of varactors coupled in series. A first common mode node is between the respective varactors of the first pair of varactors and a second common mode node is between the respective varactors of the second pair of varactors. A supply voltage node is switchably coupled to the first common mode node through a first switch, the supply voltage node being a node located between the pair of inductors. A control voltage node (VC) is switchably coupled to the second common mode node through a second switch.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: June 27, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giuseppe Papotto, Alessandro Parisi, Andrea Cavarra, Giuseppe Palmisano
  • Publication number: 20230194694
    Abstract: Disclosed herein is a tunable resonant circuit including an inductance directly electrically connected in series between first and second nodes, a variable capacitance directly electrically connected between the first and second nodes, and a set of switched capacitances coupled between the first and second nodes. The set of switched capacitances includes a plurality of capacitance units, each capacitance unit comprising a first capacitance for that capacitance unit directly electrically connected between the first node and a switch and a second capacitance for the capacitance unit directly electrically connected between the switch and the second node. Control circuitry is configured to receive an input control signal and connected to control the switches of the set of switched capacitances. A biasing circuit is directly electrically connected to the tunable resonance circuit at the first and second nodes.
    Type: Application
    Filed: February 13, 2023
    Publication date: June 22, 2023
    Applicant: STMicroelectronics S.r.l.
    Inventors: Alessandro PARISI, Andrea CAVARRA, Alessandro FINOCCHIARO, Giuseppe PAPOTTO, Giuseppe PALMISANO
  • Publication number: 20230179147
    Abstract: A voltage controlled oscillator (VCO) includes: a pair of inductors coupled in series; a first pair of varactors coupled in series, and a second pair of varactors coupled in series. A first common mode node is between the respective varactors of the first pair of varactors and a second common mode node is between the respective varactors of the second pair of varactors. A supply voltage node is switchably coupled to the first common mode node through a first switch, the supply voltage node being a node located between the pair of inductors. A control voltage node (Vc) is switchably coupled to the second common mode node through a second switch.
    Type: Application
    Filed: December 7, 2021
    Publication date: June 8, 2023
    Inventors: Giuseppe Papotto, Alessandro Parisi, Andrea Cavarra, Giuseppe Palmisano
  • Patent number: 11611280
    Abstract: A DC-DC converter includes: an transformer having a primary winding and a secondary winding magnetically coupled to the primary winding; a power oscillator applying an oscillating signal to the primary to transmit a power signal to the secondary winding; a rectifier connected to the secondary winding of the transformer to obtain an output DC voltage by rectification of the power signal; comparison circuitry to generate an error signal representing a difference between the output DC voltage and a reference voltage; a transmitter connected to the secondary winding of the transformer to apply an amplitude modulation to the power signal at the secondary winding of the transformer in response to the error signal to thereby produce an amplitude modulated signal at the primary winding; and a receiver and control circuit connected to the primary winding to control an amplitude of the oscillating signal as a function of the amplitude modulated signal.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: March 21, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandro Parisi, Nunzio Greco, Nunzio Spina, Egidio Ragonese, Giuseppe Palmisano
  • Patent number: 11604267
    Abstract: An oscillator includes a tunable resonant circuit having an inductance and a variable capacitance coupled between first and second nodes, and a set of capacitances selectively coupleable between the first and second nodes. An input control node receiving an input control signal is coupled to the variable capacitance and set of capacitances. The tunable resonant circuit is tunable based on the input control signal. A biasing circuit biases the tunable resonant circuit to generate a variable-frequency output signal between the first and second nodes. A voltage divider generates a set of different voltage thresholds, and a set of comparator circuits with hysteresis compares the input control signal to the set of different voltage thresholds to generate a set of control signals. The capacitances in the set of capacitances are selectively coupleable between the first and second nodes as a function of control signals in the set of control signals.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: March 14, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandro Parisi, Andrea Cavarra, Alessandro Finocchiaro, Giuseppe Papotto, Giuseppe Palmisano
  • Publication number: 20220043137
    Abstract: An oscillator includes a tunable resonant circuit having an inductance and a variable capacitance coupled between first and second nodes, and a set of capacitances selectively coupleable between the first and second nodes. An input control node receiving an input control signal is coupled to the variable capacitance and set of capacitances. The tunable resonant circuit is tunable based on the input control signal. A biasing circuit biases the tunable resonant circuit to generate a variable-frequency output signal between the first and second nodes. A voltage divider generates a set of different voltage thresholds, and a set of comparator circuits with hysteresis compares the input control signal to the set of different voltage thresholds to generate a set of control signals. The capacitances in the set of capacitances are selectively coupleable between the first and second nodes as a function of control signals in the set of control signals.
    Type: Application
    Filed: August 5, 2021
    Publication date: February 10, 2022
    Applicant: STMicroelectronics S.r.l.
    Inventors: Alessandro PARISI, Andrea CAVARRA, Alessandro FINOCCHIARO, Giuseppe PAPOTTO, Giuseppe PALMISANO
  • Publication number: 20220043136
    Abstract: A PLL has a tunable resonator including an inductance and variable capacitance coupled between first and second nodes, and capacitances coupleable between the nodes. A control node is coupled to the variable capacitance and receives a control signal for tuning the resonator. A biasing circuit biases the resonator to generate an output. A PFD circuit senses timing offset of the output with respect to a reference and asserts first or second digital signals dependent on the sign of the timing offset. A charge pump generates the control signal based on the first and second digital signals. A timer asserts a timing signal in response to a pulse sensed in a reset signal and de-asserts the timing signal after a time interval. A calibrator couples selected capacitances between the first and second nodes as a function of the second digital signal, in response to assertion of the timing signal.
    Type: Application
    Filed: August 5, 2021
    Publication date: February 10, 2022
    Applicant: STMicroelectronics S.r.l.
    Inventors: Alessandro FINOCCHIARO, Alessandro PARISI, Andrea CAVARRA, Giuseppe PAPOTTO, Giuseppe PALMISANO
  • Publication number: 20210376735
    Abstract: A DC-DC converter includes: an transformer having a primary winding and a secondary winding magnetically coupled to the primary winding; a power oscillator applying an oscillating signal to the primary to transmit a power signal to the secondary winding; a rectifier connected to the secondary winding of the transformer to obtain an output DC voltage by rectification of the power signal; comparison circuitry to generate an error signal representing a difference between the output DC voltage and a reference voltage; a transmitter connected to the secondary winding of the transformer to apply an amplitude modulation to the power signal at the secondary winding of the transformer in response to the error signal to thereby produce an amplitude modulated signal at the primary winding; and a receiver and control circuit connected to the primary winding to control an amplitude of the oscillating signal as a function of the amplitude modulated signal.
    Type: Application
    Filed: August 17, 2021
    Publication date: December 2, 2021
    Applicant: STMicroelectronics S.r.l.
    Inventors: Alessandro PARISI, Nunzio GRECO, Nunzio SPINA, Egidio RAGONESE, Giuseppe PALMISANO
  • Patent number: 11128221
    Abstract: A DC-DC converter includes a transformer having primary and secondary windings, a power oscillator applying an oscillating signal to the primary winding to transmit a power signal to the secondary winding, a rectifier obtaining an output DC voltage by rectifying the power signal at the secondary winding, and comparison circuitry generating an error signal representing a difference between the output DC voltage and a reference voltage value. A transmitter connected to the secondary winding performs an amplitude modulation of the power signal at the secondary winding to transmit an amplitude modulated power signal to the primary winding, the amplitude modulation based upon the error signal and modulating a stream of data to the primary winding. A receiver coupled to the primary winding demodulates the amplitude modulated power signal to recover the error signal and the stream of data. An amplitude of the oscillating signal is controlled by the error signal.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: September 21, 2021
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandro Parisi, Nunzio Greco, Nunzio Spina, Egidio Ragonese, Giuseppe Palmisano
  • Patent number: 10917091
    Abstract: An oscillator is coupled to a first side of a galvanic barrier for supplying thereto an electric supply signal. The oscillator is configured to be alternatively turned on and off as a function of a PWM drive signal applied thereto. A receiver circuit coupled to the galvanic barrier receives therefrom a PWM power control signal. A signal reconstruction circuit coupled between the receiver circuit block and the oscillator provides to the oscillator a PWM drive signal reconstructed from the PWM power control signal. The signal reconstruction circuit includes a PLL circuit coupled to the receiver circuit block and configured to lock to the PWM control signal from the receiver circuit block. A PLL loop within the PLL circuit is sensitive to the PWM drive signal applied to the oscillator. The PLL loop is configured to be opened as a result of the power supply oscillator being turned off.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: February 9, 2021
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandro Parisi, Nunzio Greco, Nunzio Spina, Egidio Ragonese, Giuseppe Palmisano
  • Publication number: 20200161980
    Abstract: A DC-DC converter includes a transformer having primary and secondary windings, a power oscillator applying an oscillating signal to the primary winding to transmit a power signal to the secondary winding, a rectifier obtaining an output DC voltage by rectifying the power signal at the secondary winding, and comparison circuitry generating an error signal representing a difference between the output DC voltage and a reference voltage value. A transmitter connected to the secondary winding performs an amplitude modulation of the power signal at the secondary winding to transmit an amplitude modulated power signal to the primary winding, the amplitude modulation based upon the error signal and modulating a stream of data to the primary winding. A receiver coupled to the primary winding demodulates the amplitude modulated power signal to recover the error signal and the stream of data. An amplitude of the oscillating signal is controlled by the error signal.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 21, 2020
    Applicant: STMicroelectronics S.r.l.
    Inventors: Alessandro PARISI, Nunzio GRECO, Nunzio SPINA, Egidio RAGONESE, Giuseppe PALMISANO
  • Patent number: 10637360
    Abstract: A DC-DC converter includes a power oscillator connected to a first transformer winding, and a channel conveying a data stream through galvanic isolation by power signal modulation. A rectifier rectifies the power signal to produce a DC voltage. A comparator produces an error signal from the DC voltage and a reference voltage. An analog-to-digital converter converts the error signal to a digital power control value. A multiplexer multiplexes the digital power control value with the data stream to obtain a multiplexed bitstream. A transmitter driven by the multiplexed bitstream performs amplitude modulation of the power signal at a second transformer winding. A receiver connected to the first winding demodulates the amplitude modulated power signal. A demultiplexer demultiplexes the data stream and the digital power control value. A digital-to-analog converter converts the digital power control value to an analog control signal for the power oscillator.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: April 28, 2020
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandro Parisi, Nunzio Greco, Nunzio Spina, Egidio Ragonese, Giuseppe Palmisano
  • Publication number: 20190305775
    Abstract: An oscillator is coupled to a first side of a galvanic barrier for supplying thereto an electric supply signal. The oscillator is configured to be alternatively turned on and off as a function of a PWM drive signal applied thereto. A receiver circuit coupled to the galvanic barrier receives therefrom a PWM power control signal. A signal reconstruction circuit coupled between the receiver circuit block and the oscillator provides to the oscillator a PWM drive signal reconstructed from the PWM power control signal. The signal reconstruction circuit includes a PLL circuit coupled to the receiver circuit block and configured to lock to the PWM control signal from the receiver circuit block. A PLL loop within the PLL circuit is sensitive to the PWM drive signal applied to the oscillator. The PLL loop is configured to be opened as a result of the power supply oscillator being turned off.
    Type: Application
    Filed: April 1, 2019
    Publication date: October 3, 2019
    Applicant: STMicroelectronics S.r.l.
    Inventors: Alessandro PARISI, Nunzio GRECO, Nunzio SPINA, Egidio RAGONESE, Giuseppe PALMISANO
  • Publication number: 20190222126
    Abstract: A DC-DC converter includes a power oscillator connected to a first transformer winding, and a channel conveying a data stream through galvanic isolation by power signal modulation. A rectifier rectifies the power signal to produce a DC voltage. A comparator produces an error signal from the DC voltage and a reference voltage. An analog-to-digital converter converts the error signal to a digital power control value. A multiplexer multiplexes the digital power control value with the data stream to obtain a multiplexed bitstream. A transmitter driven by the multiplexed bitstream performs amplitude modulation of the power signal at a second transformer winding. A receiver connected to the first winding demodulates the amplitude modulated power signal. A demultiplexer demultiplexes the data stream and the digital power control value. A digital-to-analog converter converts the digital power control value to an analog control signal for the power oscillator.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 18, 2019
    Applicant: STMicroelectronics S.r.l.
    Inventors: Alessandro Parisi, Nunzio Greco, Nunzio Spina, Egidio Ragonese, Giuseppe Palmisano