Patents by Inventor Alex Salnik

Alex Salnik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10533954
    Abstract: Disclosed are methods and apparatus for detecting defects or reviewing defects in a semiconductor sample. The system has a brightfield (BF) module for directing a BF illumination beam onto a sample and detecting an output beam reflected from the sample in response to the BF illumination beam. The system has a modulated optical reflectance (MOR) module for directing a pump and probe beam to the sample and detecting a MOR output beam from the probe spot in response to the pump beam and the probe beam. The system includes a processor for analyzing the BF output beam from a plurality of BF spots to detect defects on a surface or near the surface of the sample and analyzing the MOR output beam from a plurality of probe spots to detect defects that are below the surface of the sample.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: January 14, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Lena Nicolaides, Mohan Mahadevan, Alex Salnik, Scott A. Young
  • Publication number: 20180003648
    Abstract: Disclosed are methods and apparatus for detecting defects or reviewing defects in a semiconductor sample. The system has a brightfield (BF) module for directing a BF illumination beam onto a sample and detecting an output beam reflected from the sample in response to the BF illumination beam. The system has a modulated optical reflectance (MOR) module for directing a pump and probe beam to the sample and detecting a MOR output beam from the probe spot in response to the pump beam and the probe beam. The system includes a processor for analyzing the BF output beam from a plurality of BF spots to detect defects on a surface or near the surface of the sample and analyzing the MOR output beam from a plurality of probe spots to detect defects that are below the surface of the sample.
    Type: Application
    Filed: August 31, 2017
    Publication date: January 4, 2018
    Applicant: KLA-Tencor Corporation
    Inventors: Lena Nicolaides, Mohan Mahadevan, Alex Salnik, Scott A. Young
  • Patent number: 9772297
    Abstract: Disclosed are methods and apparatus for detecting defects or reviewing defects in a semiconductor sample. The system has a brightfield (BF) module for directing a BF illumination beam onto a sample and detecting an output beam reflected from the sample in response to the BF illumination beam. The system has a modulated optical reflectance (MOR) module for directing a pump and probe beam to the sample and detecting a MOR output beam from the probe spot in response to the pump beam and the probe beam. The system includes a processor for analyzing the BF output beam from a plurality of BF spots to detect defects on a surface or near the surface of the sample and analyzing the MOR output beam from a plurality of probe spots to detect defects that are below the surface of the sample.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: September 26, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Lena Nicolaides, Mohan Mahadevan, Alex Salnik, Scott A. Young
  • Patent number: 9232622
    Abstract: A laser-sustained plasma illuminator system includes at least one laser light source to provide light. At least one reflector focuses the light from the laser light source at a focal point of the reflector. An enclosure substantially filled with a gas is positioned at or near the focal point of the reflector. The light from the laser light source at least partially sustains a plasma contained in the enclosure. The enclosure has at least one wall with at least one property that is varied to compensate for optical aberrations in the system.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: January 5, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Ilya Bezel, Anatoly Shchemelinin, Alex Salnik, Anant Chimmalgi
  • Publication number: 20150226676
    Abstract: Disclosed are methods and apparatus for detecting defects or reviewing defects in a semiconductor sample. The system has a brightfield (BF) module for directing a BF illumination beam onto a sample and detecting an output beam reflected from the sample in response to the BF illumination beam. The system has a modulated optical reflectance (MOR) module for directing a pump and probe beam to the sample and detecting a MOR output beam from the probe spot in response to the pump beam and the probe beam. The system includes a processor for analyzing the BF output beam from a plurality of BF spots to detect defects on a surface or near the surface of the sample and analyzing the MOR output beam from a plurality of probe spots to detect defects that are below the surface of the sample.
    Type: Application
    Filed: February 10, 2015
    Publication date: August 13, 2015
    Applicant: KLA-Tencor Corporation
    Inventors: Lena Nicolaides, Mohan Mahadevan, Alex Salnik, Scott A. Young
  • Patent number: 8962351
    Abstract: The present invention may include a first dopant metrology system configured to measure a first plurality of values of at least one parameter of a wafer, an ion implanter configured to implant a plurality of ions into the wafer, a second dopant metrology system configured to measure a second plurality of values of at least one parameter of the wafer following ion implantation of the wafer by the implanter, wherein the first dopant metrology system and the second dopant metrology system are communicatively coupled, an annealer configured to anneal the wafer following ion implantation, and a third dopant metrology system configured to measure a third plurality of values of at least one parameter of the wafer following annealing of the wafer by the annealer, wherein the second dopant metrology system and the third dopant metrology system are communicatively coupled.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: February 24, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Alex Salnik, Bin-Ming Benjamin Tsai, Lena Nicolaides
  • Publication number: 20140367592
    Abstract: A laser-sustained plasma illuminator system includes at least one laser light source to provide light. At least one reflector focuses the light from the laser light source at a focal point of the reflector. An enclosure substantially filled with a gas is positioned at or near the focal point of the reflector. The light from the laser light source at least partially sustains a plasma contained in the enclosure. The enclosure has at least one wall with at least one property that is varied to compensate for optical aberrations in the system.
    Type: Application
    Filed: September 3, 2014
    Publication date: December 18, 2014
    Inventors: Ilya Bezel, Anatoly Shchemelinin, Alex Salnik, Anant Chimmalgi
  • Patent number: 8853655
    Abstract: A laser-sustained plasma illuminator system includes at least one laser light source to provide light. At least one reflector focuses the light from the laser light source at a focal point of the reflector. An enclosure substantially filled with a gas is positioned at or near the focal point of the reflector. The light from the laser light source at least partially sustains a plasma contained in the enclosure. The enclosure has at least one wall with a thickness that is varied to compensate for optical aberrations in the system.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: October 7, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Ilya Bezel, Anatoly Shchemelinin, Alex Salnik, Anant Chimmalgi
  • Publication number: 20140239202
    Abstract: A laser-sustained plasma illuminator system includes at least one laser light source to provide light. At least one reflector focuses the light from the laser light source at a focal point of the reflector. An enclosure substantially filled with a gas is positioned at or near the focal point of the reflector. The light from the laser light source at least partially sustains a plasma contained in the enclosure. The enclosure has at least one wall with a thickness that is varied to compensate for optical aberrations in the system.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 28, 2014
    Inventors: Ilya Bezel, Anatoly Shchemelinin, Alex Salnik, Anant Chimmalgi
  • Patent number: 8817260
    Abstract: A modulated reflectance measurement system includes lasers for generating an intensity modulated pump beam and a UV probe beam. The pump and probe beams are focused on a measurement site within a sample. The pump beam periodically excites the measurement site and the modulation is imparted to the probe beam. For one embodiment, the wavelength of the probe beam is selected to correspond to a local maxima of the temperature reflectance coefficient of the sample. For a second embodiment, the probe laser is tuned to either minimize the thermal wave contribution to the probe beam modulation or to equalize the thermal and plasma wave contributions to the probe beam modulation.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: August 26, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Jon Opsal, Lena Nicolaides, Alex Salnik, Allan Rosencwaig
  • Patent number: 8535957
    Abstract: The present invention may include a first dopant metrology system configured to measure a first plurality of values of at least one parameter of a wafer, an ion implanter configured to implant a plurality of ions into the wafer, a second dopant metrology system configured to measure a second plurality of values of at least one parameter of the wafer following ion implantation of the wafer by the implanter, wherein the first dopant metrology system and the second dopant metrology system are communicatively coupled, an annealer configured to anneal the wafer following ion implantation, and a third dopant metrology system configured to measure a third plurality of values of at least one parameter of the wafer following annealing of the wafer by the annealer, wherein the second dopant metrology system and the third dopant metrology system are communicatively coupled.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: September 17, 2013
    Assignee: KLA-Tencor Corporation
    Inventors: Alex Salnik, Bin-Ming Benjamin Tsai, Lena Nicolaides
  • Patent number: 8436554
    Abstract: An apparatus for illuminating a target surface, the apparatus having a plurality of LED arrays, where each of the arrays has a plurality of individually addressable LEDs, and where at least one of the arrays is disposed at an angle of between about forty-five degrees and about ninety degrees relative to the target surface, where all of the arrays supply light into a light pipe, the light pipe having interior walls made of a reflective material, where light exiting the light pipe illuminates the target surface, and a controller for adjusting an intensity of the individually addressable light sources.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: May 7, 2013
    Assignee: KLA-Tencor Corporation
    Inventors: Guoheng Zhao, Ady Levy, Alex Salnik, Mehdi Vaez-Iravani, Lena Nicolaides, Samuel S. H. Ngai
  • Patent number: 8415961
    Abstract: A method may include illuminating a first area of a semiconductor utilizing a light source. The method may also include measuring at least one characteristic of electrical energy transmission utilizing a probe for placing at least one of at or near the illuminated first area of the semiconductor. The method may further include varying the measured at least one characteristic of the electrical energy transmission generated by the light from the light source incident upon the semiconductor while maintaining an intensity of the light source. Further, the method may include determining a sheet resistance for the junction of the semiconductor utilizing the varied at least one characteristic of the electrical energy transmission.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: April 9, 2013
    Assignee: KLA-Tencor Corporation
    Inventors: Guoheng Zhao, Alex Salnik, Lena Nicolaides, Ady Levy
  • Publication number: 20120256559
    Abstract: An apparatus for illuminating a target surface, the apparatus having a plurality of LED arrays, where each of the arrays has a plurality of individually addressable LEDs, and where at least one of the arrays is disposed at an angle of between about forty-five degrees and about ninety degrees relative to the target surface, where all of the arrays supply light into a light pipe, the light pipe having interior walls made of a reflective material, where light exiting the light pipe illuminates the target surface, and a controller for adjusting an intensity of the individually addressable light sources.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 11, 2012
    Applicant: KLA-Tencor Corporation
    Inventors: Guoheng Zhao, Ady Levy, Alex Salnik, Mehdi Vaez-Iravani, Lena Nicolaides, Samuel S.H. Ngai
  • Patent number: 8120776
    Abstract: Carrier activation and end-of-range defect density of ultra-shallow junctions in integrated circuits are determined using modulated optical reflectance signals, DC reflectances of pump or probe laser beams, and in-phase and quadrature signal processing. A method for determining characteristics of an ultra-shallow junction includes periodically exciting a region of the substrate using a pump laser beam, and reflecting a probe laser beam from the excited region. A modulated optical reflectance signal is measured along with DC reflectance of the probe laser beam. The modulated optical reflectance signal and DC reflectance are compared with reference signals generated from calibration substrates to determine carrier activation and end-of-range defect density in the junction.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: February 21, 2012
    Assignee: KLA-Tencor Corporation
    Inventors: Alex Salnik, Lena Nicolaides
  • Patent number: 7982867
    Abstract: Methods of obtaining dopant and damage depth profile information are disclosed using modulated optical reflectivity (MOR) measurements. In one aspect, the depth profile is constructed using information obtained from various measurements such as the junction depth, junction abruptness and dopant concentration. In another aspect, a full theoretical model is developed. Actual measurements are fed to the model. Using an iterative approach, the actual measurements are compared to theoretical measurements calculated from the model to determine the actual depth profile.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: July 19, 2011
    Assignee: KLA-Tencor Corporation
    Inventors: Alex Salnik, Jon Opsal, Lena Nicolaides
  • Publication number: 20100315625
    Abstract: Methods of obtaining dopant and damage depth profile information are disclosed using modulated optical reflectivity (MOR) measurements. In one aspect, the depth profile is constructed using information obtained from various measurements such as the junction depth, junction abruptness and dopant concentration. In another aspect, a full theoretical model is developed. Actual measurements are fed to the model. Using an iterative approach, the actual measurements are compared to theoretical measurements calculated from the model to determine the actual depth profile.
    Type: Application
    Filed: April 26, 2010
    Publication date: December 16, 2010
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Alex SALNIK, Jon Opsal, Lena Nicolaides
  • Publication number: 20100134785
    Abstract: A modulated reflectance measurement system includes lasers for generating an intensity modulated pump beam and a UV probe beam. The pump and probe beams are focused on a measurement site within a sample. The pump beam periodically excites the measurement site and the modulation is imparted to the probe beam. For one embodiment, the wavelength of the probe beam is selected to correspond to a local maxima of the temperature reflectance coefficient of the sample. For a second embodiment, the probe laser is tuned to either minimize the thermal wave contribution to the probe beam modulation or to equalize the thermal and plasma wave contributions to the probe beam modulation.
    Type: Application
    Filed: November 11, 2009
    Publication date: June 3, 2010
    Applicant: KLA-Tencor Corp.
    Inventors: Jon Opsal, Lena Nicolaides, Alex Salnik, Allan Rosencwaig
  • Patent number: 7705977
    Abstract: Methods of obtaining dopant and damage depth profile information are disclosed using modulated optical reflectivity (MOR) measurements. In one aspect, the depth profile is constructed using information obtained from various measurements such as the junction depth, junction abruptness and dopant concentration. In another aspect, a full theoretical model is developed. Actual measurements are fed to the model. Using an iterative approach, the actual measurements are compared to theoretical measurements calculated from the model to determine the actual depth profile.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: April 27, 2010
    Assignee: KLA-Tencor Corporation
    Inventors: Alex Salnik, Jon Opsal, Lena Nicolaides
  • Patent number: 7646486
    Abstract: A modulated reflectance measurement system includes lasers for generating an intensity modulated pump beam and a UV probe beam. The pump and probe beams are focused on a measurement site within a sample. The pump beam periodically excites the measurement site and the modulation is imparted to the probe beam. For one embodiment, the wavelength of the probe beam is selected to correspond to a local maxima of the temperature reflectance coefficient of the sample. For a second embodiment, the probe laser is tuned to either minimize the thermal wave contribution to the probe beam modulation or to equalize the thermal and plasma wave contributions to the probe beam modulation.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: January 12, 2010
    Assignee: KLA-Tencor Corporation
    Inventors: Jon Opsal, Lena Nicolaides, Alex Salnik, Allan Rosencwaig