Patents by Inventor Alexander Grün

Alexander Grün has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11761806
    Abstract: A thermal flowmeter for measuring the mass flow rate of a medium in a measuring tube, includes: a measuring tube having a measuring tube wall; a sensor having four probes that project into the measuring tube from a main sensor body; and an electronic measuring/operating circuit designed to operate at least three probes and to generate and provide flow measurement values by operating the probes, each probe having a main probe body and an active probe body, the active probe body designed to heat the medium, to determine the temperature of the medium and/or to influence a flow of the medium in the measuring tube, wherein the main probe bodies span a rhombus on a surface of the main sensor body, and the rhombus is defined by centroid points of cross-sections of the main probe bodies.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: September 19, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Alexander Grün, Mathieu Habert
  • Patent number: 11614353
    Abstract: A thermal flow measuring device comprising a sensor with a metal sensor housing, the sensor housing including at least a first and a second pin sleeve extending from a base, each pin sleeve having a longitudinal axis and an end face, the two pin sleeves defining a connecting axis, wherein in the first pin sleeve a first heater is arranged and in the second pin sleeve a temperature sensor is arranged, wherein the sensor housing includes at least a third pin sleeve, having a second heater, and a flow obstruction embodied such that the third pin sleeve is arranged in a first flow direction at least partially in the flow shadow of the flow obstruction, wherein the first flow direction extends at an angle of 80-100° to the connecting axis and lies on a plane perpendicular to the longitudinal axes of the first and second pin sleeves.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: March 28, 2023
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Hanno Schultheis, Alexander Grün, Emioni Papadopoulou, Stephan Gaberthüel, Martin Barth, Panagiotis Papathanasiou
  • Publication number: 20220341767
    Abstract: A thermal flowmeter for measuring the mass flow rate of a medium in a measuring tube, includes: a measuring tube having a measuring tube wall; a sensor having four probes that project into the measuring tube from a main sensor body; and an electronic measuring/operating circuit designed to operate at least three probes and to generate and provide flow measurement values by operating the probes, each probe having a main probe body and an active probe body, the active probe body designed to heat the medium, to determine the temperature of the medium and/or to influence a flow of the medium in the measuring tube, wherein the main probe bodies span a rhombus on a surface of the main sensor body, and the rhombus is defined by centroid points of cross-sections of the main probe bodies.
    Type: Application
    Filed: May 4, 2020
    Publication date: October 27, 2022
    Inventors: Alexander Grün, Mathieu Habert
  • Publication number: 20220196450
    Abstract: A method for producing a probe of a thermal flowmeter for measuring mass flow of a medium in a measuring tube, wherein a probe core is provided arranged loosely in a probe sleeve having a longitudinal axis, wherein the probe sleeve is deformed relative to the longitudinal axis completely radially in the direction of the probe core by means of high energy rate forming, wherein a material-locking connection between probe sleeve and probe core results and a rod is formed, wherein the rod represents a base body that is used for probe production, wherein a deformation speed reaches values greater than 100 m/s, and wherein the high energy rate forming includes explosive forming or magnetic forming.
    Type: Application
    Filed: March 31, 2020
    Publication date: June 23, 2022
    Inventors: Anastasios Badarlis, Stephan Gaberthüel, Alexander Grün, Hanno Schultheis, Tobias Baur, Martin Barth, Martin Arnold, Mathieu Habert
  • Patent number: 11280650
    Abstract: Disclosed is a thermal flowmeter for measuring mass flow of a medium in a measuring tube, comprising: a measuring tube having a tube wall and a tube axis; a sensor with four probes, extending from a sensor base into the measuring tube, wherein the probes are adapted to heat medium, to determine its temperature or to influence a flow of the medium; and an electronic circuit, adapted to operate the probes and to create and to provide flow measured values. Each probe has a probe base and a probe active portion, wherein the probe active portion is adapted to heat the medium, to determine the temperature of the medium, and/or to influence a flow of the medium. The probe bases define a rhombus on a surface of the sensor base, wherein the rhombus is defined by geometric centers of cross sections of the probe bases.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: March 22, 2022
    Assignee: ENDRESS+HAUSER FLOWTEC AG
    Inventors: Alexander Grün, Hanno Schultheis, Sascha Kamber
  • Patent number: 11248941
    Abstract: The present disclosure relates to a method for manufacturing a sensor for a thermal, flow measuring device. The method includes, in such case, manufacturing a metal jacketing for a sensor core, introducing the sensor core into the metal jacketing and sintering the metal jacketing with introduced sensor core.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: February 15, 2022
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Hanno Schultheis, Alexander Grün, Stephan Gaberthüel
  • Patent number: 11204270
    Abstract: A flow measuring device comprising a measurement signal-generating sensor element and a metal connection element, especially one manufactured in a generative manufacturing method, for connecting the measurement signal-generating sensor element with an opening or sensor nozzle of a tube, where the connection element is connected with a pressure-bearing component comprising a sleeve and a wall, which extends over the entire cross section in parallel projection in the direction of a longitudinal axis of the sleeve, wherein the pressure bearing component has at least one electrical cable guide and a potting compound, wherein the potting compound fills the sleeve partially or completely, and wherein the pressure bearing component is arranged in the opening or in the sensor nozzle of the tube radially behind the connection element with reference to the longitudinal axis of the tube.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: December 21, 2021
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Stephan Gaberthüel, Alexander Grün
  • Patent number: 11054293
    Abstract: The present disclosure relates to a method for producing a probe of a thermal flow meter for measuring the mass flow rate of a medium in a measuring tube, the method having the following steps: introducing a probe core in the form of a material to be melted into a first probe casing, the first probe casing having an open first end and a closed second end facing away from the first end; melting the probe core; quenching the probe core to a temperature below the solidification temperature; attaching a thermoelement to a contact surface of the solidified probe core. The invention also relates to a probe obtained according to the production method and to a flow meter including the probes according to the present disclosure.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: July 6, 2021
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Stephan Gaberthüel, Alexander Grün, Hanno Schultheis, Tobias Baur, Martin Barth, Anastasios Badarlis, Lars Neyerlin, Martin Arnold, Oliver Popp
  • Patent number: 10989581
    Abstract: Disclosed is a sensor of a thermal, flow measuring device. The sensor includes a sensor cup having at least one protrusion on the floor of the cup that assures a constant spacing of a sensor element from the cup floor so that a good temperature transfer between the sensor element and a medium flowing around the sensor is assured. Also disclosed is a thermal, flow measuring device employing such a sensor.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: April 27, 2021
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Stephan Gaberthüel, Alexander Grün, Hanno Schultheis, Tobias Baur
  • Patent number: 10976188
    Abstract: The present disclosure relates to a method for manufacturing a probe of a thermal, flow measuring device for measuring mass flow of a liquid in a measuring tube, wherein the method includes: introducing a probe core including a hard solder and a core element into a first probe sleeve, wherein the first probe sleeve has an open first end and a closed second end away from the first end; melting the hard solder; affixing the core element by cooling the hard solder to a temperature less than the solidification temperature; and applying a thermoelement to a contact area of the core element or of the solidified hard solder. The present disclosure relates, furthermore, to a probe resulting from the manufacturing process as well as to a flow measuring device having at least one probe of the-present disclosure.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: April 13, 2021
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Stephan Gaberthüel, Alexander Grün, Hanno Schultheis, Tobias Baur, Martin Barth, Anastasios Badarlis, Lars Neyerlin, Martin Arnold, Oliver Popp
  • Publication number: 20210055145
    Abstract: Disclosed is a thermal flowmeter for measuring mass flow of a medium in a measuring tube, comprising: a measuring tube having a tube wall and a tube axis; a sensor with four probes, extending from a sensor base into the measuring tube, wherein the probes are adapted to heat medium, to determine its temperature or to influence a flow of the medium; and an electronic circuit, adapted to operate the probes and to create and to provide flow measured values. Each probe has a probe base and a probe active portion, wherein the probe active portion is adapted to heat the medium, to determine the temperature of the medium, and/or to influence a flow of the medium. The probe bases define a rhombus on a surface of the sensor base, wherein the rhombus is defined by geometric centers of cross sections of the probe bases.
    Type: Application
    Filed: February 15, 2019
    Publication date: February 25, 2021
    Inventors: Alexander Grün, Hanno Schultheis, Sascha Kamber
  • Patent number: 10794743
    Abstract: A thermal, flow measuring device comprising a sensor with a metal sensor housing, which includes a cap with a lateral surface and an end face, wherein the sensor housing has at least first and second pin sleeves, which protrude starting from the end face, wherein the sensor housing has a first heater in a first of the two pin sleeves and a temperature sensor in a second of the two pin sleeves for ascertaining a temperature of the medium; wherein the end face of the cap is divided at least into a base area and at least a first planar area inclined relative to the base area by an angle, wherein a second heater is arranged on an inner surface of the cap in the region of this first area.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: October 6, 2020
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Hanno Schultheis, Alexander Grün, Axel Pfau
  • Patent number: 10768032
    Abstract: The present disclosure relates to a sensor for a thermal flow measuring device, to a thermal flow measuring device, as well as to a method for the manufacture of such a sensor. The sensor includes a sensor thimble, wherein a defined separation of a sensor element from a thimble floor of the sensor thimble is provided by spacers so that a temperature transfer between the sensor and a liquid flowing around the sensor is provided. Thermal contact between the thimble floor and the sensor element is provided by a solder layer.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: September 8, 2020
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Hanno Schultheis, Alexander Grün, Stephan Gaberthüel
  • Publication number: 20200191629
    Abstract: The present disclosure relates to a method for producing a probe of a thermal flow meter for measuring the mass flow rate of a medium in a measuring tube, the method having the following steps: introducing a probe core in the form of a material to be melted into a first probe casing, the first probe casing having an open first end and a closed second end facing away from the first end; melting the probe core; quenching the probe core to a temperature below the solidification temperature; attaching a thermoelement to a contact surface of the solidified probe core. The invention also relates to a probe obtained according to the production method and to a flow meter including the probes according to the present disclosure.
    Type: Application
    Filed: October 10, 2017
    Publication date: June 18, 2020
    Inventors: Stephan Gaberthüel, Alexander Grün, Hanno Schultheis, Tobias Baur, Martin Barth, Anastasios Badarlis, Lars Neyerlin, Martin Arnold, Oliver Popp
  • Patent number: 10612950
    Abstract: The application discloses a thermal, flow measuring device comprising: a sensor including a metal sensor housing having a hollow body and a base; and at least first and second pin sleeves protruding from the base. In a first of the two pin sleeves a first heater is provided and in a second of the two pin sleeves a temperature sensor is provided for ascertaining a temperature of a medium. At least two elongated elements extend with at least the same length as the pin sleeves starting from the hollow body in parallel with the two pin sleeves. On a cutting plane perpendicular to the sensor axis another axis extends that is perpendicular to the connecting axis and wherein the separation of the elongated elements in their course parallel with the axis lessens in certain regions.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: April 7, 2020
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Martin Barth, Alexander Grün, Emioni Papadopoulou, Axel Pfau
  • Publication number: 20190376827
    Abstract: The invention relates to a sensor of a thermal, flow measuring device, to a thermal, flow measuring device and to a method for manufacturing such a sensor, wherein the sensor has a sensor cup having at least one protrusion, which assures a constant spacing of a sensor element from a cup floor, so that a good temperature transfer between sensor and a medium flowing around the sensor is assured.
    Type: Application
    Filed: April 19, 2017
    Publication date: December 12, 2019
    Applicant: Endress+Hauser Flowtec AG
    Inventors: Stephan GABERTHÜEL, Alexander GRÜN, Hanno SCHULTHEIS, Tobias BAUR
  • Publication number: 20190301907
    Abstract: The present invention relates to a method for manufacturing a sensor for a thermal, flow measuring device and a sensor. The method includes, in such case, manufacturing a metal jacketing for a sensor core, introducing the sensor core into the metal jacketing and sintering the metal jacketing with introduced sensor core.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 3, 2019
    Inventors: Hanno Schultheis, Alexander Grün, Stephan Gaberthüel
  • Publication number: 20190293466
    Abstract: The invention relates to a method for manufacturing a probe (10) of a thermal, flow measuring device for measuring mass flow of a liquid in a measuring tube, wherein the method comprises steps as follows: introducing a probe core comprising a hard solder and a core element into a first probe sleeve, wherein the first probe sleeve has an open first end and a closed second end away from the first end; melting the hard solder; affixing the core element by cooling the hard solder to a temperature less than the solidification temperature; applying a thermoelement to a contact area of the core element or of the solidified hard solder. The invention relates, furthermore, to a probe resulting from the manufacturing process as well as to a flow measuring device having at least one probe of the invention.
    Type: Application
    Filed: October 10, 2017
    Publication date: September 26, 2019
    Inventors: Stephan Gaberthüel, Alexander Grün, Hanno Schultheis, Tobias Baur, Martin Barth, Anastasios Badarlis, Lars Neyerlin, Martin Arnold, Oliver Popp
  • Publication number: 20190250021
    Abstract: The present disclosure relates to a sensor for a thermal flow measuring device, to a thermal flow measuring device, as well as to a method for the manufacture of such a sensor. The sensor includes a sensor thimble, wherein a defined separation of a sensor element from a thimble floor of the sensor thimble is provided by spacers so that a temperature transfer between the sensor and a liquid flowing around the sensor is provided. Thermal contact between the thimble floor and the sensor element is provided by a solder layer.
    Type: Application
    Filed: July 20, 2017
    Publication date: August 15, 2019
    Inventors: Hanno Schultheis, Alexander Grün, Stephan Gaberthüel
  • Publication number: 20180372522
    Abstract: A flow measuring device comprising a measurement signal-generating sensor element and a metal connection element, especially one manufactured in a generative manufacturing method, for connecting the measurement signal-generating sensor element with an opening or sensor nozzle of a tube, where the connection element is connected with a pressure-bearing component comprising a sleeve and a wall, which extends over the entire cross section in parallel projection in the direction of a longitudinal axis of the sleeve, wherein the pressure bearing component has at least one electrical cable guide and a potting compound, wherein the potting compound fills the sleeve partially or completely, and wherein the pressure bearing component is arranged in the opening or in the sensor nozzle of the tube radially behind the connection element with reference to the longitudinal axis of the tube.
    Type: Application
    Filed: November 15, 2016
    Publication date: December 27, 2018
    Inventors: Stephan Gaberthüel, Alexander Grün