Patents by Inventor Alexander Hans Vija

Alexander Hans Vija has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11361478
    Abstract: For partial volume correction, the partial volume effect is simulated using patient-specific segmentation. An organ or other object of the patient is segmented using anatomical imaging. For simulation, the locations of the patient-specific object or objects are sub-divided, creating artificial boundaries in the object. A test activity is assigned to each sub-division and forward projected. The difference of the forward projected activity to the test activity provides a location-by-location partial volume correction map. This correction map is used in reconstruction from the measured emissions, resulting in more accurate activity estimation with less partial volume effect.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: June 14, 2022
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Hans Vija, Michal Cachovan
  • Patent number: 11335040
    Abstract: A system and method include training of an artificial neural network to generate a simulated attenuation-corrected reconstructed volume from an input non-attenuation-corrected reconstructed volume, the training based on a plurality of non-attenuation-corrected volumes generated from respective ones of a plurality of sets of two-dimensional emission data and on a plurality of attenuation-corrected reconstructed volumes generated from respective ones of the plurality of sets of two-dimensional emission data.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: May 17, 2022
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Xinhong Ding, Alexander Hans Vija
  • Patent number: 11334987
    Abstract: A system and method includes input of a plurality of sets of training data to a neural network to generate a plurality of sets of output data, determination of a first loss based on the plurality of sets of output data and on the plurality of sets of ground truth data, determination if a second loss based on the plurality of sets of output data and one or more physics-based constraints, and modification of the neural network based on the first loss and the second loss.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: May 17, 2022
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Hans Vija, Xinhong Ding, Francesc dAssis Massanes Basi
  • Publication number: 20220076808
    Abstract: Systems and methods for imaging. An external device may be used to acquire optical image data of a subject. One or more physical parameters of the subject may be determined based on the optical image data. The one or more physical parameters may be translated to one or more properties of the subject. The one or more properties may then be used to generate medical image data of the subject.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 10, 2022
    Inventors: Alexander Hans Vija, Francesc dAssis Massanes Basi
  • Patent number: 11250545
    Abstract: For denoising in SPECT, such as qSPECT, machine learning is used to relate settings to noise structure. Given the SPECT imaging arrangement for a patient, the machine-learned model estimates the structure of the noise. This noise structure may be used to denoise the reconstructed representation.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: February 15, 2022
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Hans Vija, Michal Cachovan
  • Publication number: 20220015726
    Abstract: A detector used for tomography imaging is mobile, allowing the detector to move about an object (e.g., patient to be imaged). A swarm of such detectors, such as a swarm of drones with detectors, may be used for tomography imaging. The trajectory or trajectories of the mobile detectors may account for the pose and/or movement of the object being imaged. The trajectory or trajectories may be based, in part, on the sampling for desired tomography. An image of an internal region of the object is reconstructed from detected signals of the mobile detectors using tomography.
    Type: Application
    Filed: September 30, 2021
    Publication date: January 20, 2022
    Inventors: Alexander Hans Vija, Michal Cachovan
  • Publication number: 20210390742
    Abstract: For controlling reconstruction in emission tomography, the quality of data for detected emissions and/or the application controls the settings used in reconstruction. For example, a count density of the detected emissions is used to control the number of iterations in reconstruction to more likely avoid over and under fitting. The count density may be adaptively determined by re-binning through pixel size adjustment to find a smallest pixel size providing a sufficient count density. As another example, the detected data may have poor quality due to motion or high body mass index (BMI) of the patient, so the reconstruction is set to perform differently (e.g., less smoothing for high motion or a different number of iterations for high BMI). The quality of the data may be used in conjunction with the application or task for imaging the patient to control the reconstruction.
    Type: Application
    Filed: June 10, 2020
    Publication date: December 16, 2021
    Inventors: Alexander Hans Vija, Francesc dAssis Massanes Basi, Manjit Ray, Raymond Shi Xu
  • Patent number: 11191515
    Abstract: For SPECT-based internal dose estimation, a portable detector is used to sample activity. The portable detector may selectively use far-field or near-field imaging for a SPECT scan. A camera and/or gyroscope assist in determining emission location and/or aligning activities from the different times. The time-activity curve or another dose is estimated using activities from different times where the activity for at least one time is from the portable detector, which may allow for more frequent sampling of activity and more accurate dose estimation.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: December 7, 2021
    Assignee: Siemens Medical Solutions USA, Inc
    Inventors: Alexander Hans Vija, Francesc dAssis Massanes Basi, Miesher Rodrigues
  • Patent number: 11182935
    Abstract: A system and method include acquisition of a plurality of sets of images which meet acceptance criteria of an imaging task, each set of images acquired using a respective instance of a type of imaging component, acquisition of a test image using a test instance of the type of imaging component, presentation of a plurality of groups of images, each of the groups of images including the test image and a respective one or more images of the plurality of sets of images, reception, for each group of images, of an indication from an observer of a ranking of the test image of the group with respect to the respective one or more images of the group, and determination of a quality of the test instance of the type of imaging component based on the indications.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: November 23, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Hans Vija, Francesc dAssis Massanes Basi
  • Patent number: 11160520
    Abstract: A detector used for tomography imaging is mobile, allowing the detector to move about an object (e.g., patient to be imaged). A swarm of such detectors, such as a swarm of drones with detectors, may be used for tomography imaging. The trajectory or trajectories of the mobile detectors may account for the pose and/or movement of the object being imaged. The trajectory or trajectories may be based, in part, on the sampling for desired tomography. An image of an internal region of the object is reconstructed from detected signals of the mobile detectors using tomography.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: November 2, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Hans Vija, Michal Cachovan
  • Patent number: 11151759
    Abstract: An emission image is generated from poor quality emission data. A machine-learned model may be used to recover information. Emission imaging may be provided due to the recovery in a way that at least some diagnostically useful information is made available despite corruption that would otherwise result in less diagnostically useful information or no image at all.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: October 19, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Hans Vija, Michal Cachovan
  • Publication number: 20210312675
    Abstract: A system and method include acquisition of a plurality of sets of images which meet acceptance criteria of an imaging task, each set of images acquired using a respective instance of a type of imaging component, acquisition of a test image using a test instance of the type of imaging component, presentation of a plurality of groups of images, each of the groups of images including the test image and a respective one or more images of the plurality of sets of images, reception, for each group of images, of an indication from an observer of a ranking of the test image of the group with respect to the respective one or more images of the group, and determination of a quality of the test instance of the type of imaging component based on the indications.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 7, 2021
    Inventors: Alexander Hans Vija, Francesc dAssis Massanes Basi
  • Publication number: 20210290189
    Abstract: A Compton camera for medical imaging is divided into segments with each segment including part of the scatter detector, part of the catcher detector, and part of the electronics. The different segments may be positioned together to form the Compton camera arcing around part of the patient space. By using segments, any number of segments may be used to fit with a multi-modality imaging system.
    Type: Application
    Filed: August 7, 2018
    Publication date: September 23, 2021
    Inventors: Alexander Hans Vija, Miesher Rodrigues, James Frank Caruba
  • Publication number: 20210282728
    Abstract: A multi-modality imaging system allows for selectable photoelectric effect and/or Compton effect detection. The camera or detector is a module with a catcher detector. Depending on the use or design, a scatter detector and/or a coded physical aperture are positioned in front of the catcher detector relative to the patient space. For low energies, emissions passing through the scatter detector continue through the coded aperture to be detected by the catcher detector using the photoelectric effect. Alternatively, the scatter detector is not provided. For higher energies, some emissions scatter at the scatter detector, and resulting emissions from the scattering pass by or through the coded aperture to be detected at the catcher detector for detection using the Compton effect. Alternatively, the coded aperture is not provided. The same module may be used to detect using both the photoelectric and Compton effects where both the scatter detector and coded aperture are provided with the catcher detector.
    Type: Application
    Filed: August 7, 2018
    Publication date: September 16, 2021
    Inventors: Alexander Hans Vija, Miesher Rodrigues
  • Publication number: 20210259652
    Abstract: A detector used for tomography imaging is mobile, allowing the detector to move about an object (e.g., patient to be imaged). A swarm of such detectors, such as a swarm of drones with detectors, may be used for tomography imaging. The trajectory or trajectories of the mobile detectors may account for the pose and/or movement of the object being imaged. The trajectory or trajectories may be based, in part, on the sampling for desired tomography. An image of an internal region of the object is reconstructed from detected signals of the mobile detectors using tomography.
    Type: Application
    Filed: February 26, 2020
    Publication date: August 26, 2021
    Inventors: Alexander Hans Vija, Michal Cachovan
  • Patent number: 11065475
    Abstract: A system and method include acquisition of a set of tomographic images of a patient volume associated with each of a plurality of timepoints of a first radiopharmaceutical therapy cycle, determination, for each of the plurality of timepoints, of a systematic uncertainty for each of a plurality of regions within the patient volume based on the set of tomographic images associated with the timepoint, determination, for each of the plurality of timepoints, of a quantitative statistical uncertainty based on the set of tomographic images associated with the timepoint, determination of a dose and a dose uncertainty for each of the plurality of regions based on the set of tomographic images, the systematic uncertainty and the quantitative statistical uncertainty for each of the plurality of timepoints, and display of a cumulative dose and cumulative dose uncertainty for each of the plurality of regions based on the dose and the dose uncertainty determined for each of the plurality of regions.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: July 20, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Michal Cachovan, Alexander Hans Vija
  • Publication number: 20210110535
    Abstract: A framework for quality-driven image processing. In accordance with one aspect, image data and anatomical data of a region of interest are received. Zonal information is generated based on the anatomical data. Image processing is performed based on the image data to generate an intermediate image. One or more image quality metrics may then be determined for the intermediate image data using the zonal information. A processing action may be performed based on the one or more image quality metrics to generate a final image.
    Type: Application
    Filed: June 10, 2020
    Publication date: April 15, 2021
    Inventors: Alexander Hans Vija, Francesc dAssis Massanes Basi
  • Publication number: 20210110531
    Abstract: A system and method includes input of a plurality of sets of training data to a neural network to generate a plurality of sets of output data, determination of a first loss based on the plurality of sets of output data and on the plurality of sets of ground truth data, determination if a second loss based on the plurality of sets of output data and one or more physics-based constraints, and modification of the neural network based on the first loss and the second loss.
    Type: Application
    Filed: May 6, 2020
    Publication date: April 15, 2021
    Inventors: Alexander Hans Vija, Xinhong Ding, Francesc dAssis Massanes Basi
  • Publication number: 20210106848
    Abstract: Parameterized model reconstruction is used for internal dose tomography. The parameterized model, solved for within the reconstruction, models the dose level and may account for diffusion, isotope half-life, and/or biological half-life. Using the detected emissions from different scans (e.g., from different scan sessions in a given cycle) as input for the one reconstruction, the parameterized model reconstruction determines the biodistribution of dose at any time.
    Type: Application
    Filed: April 10, 2020
    Publication date: April 15, 2021
    Inventors: Alexander Hans Vija, Michal Cachovan
  • Publication number: 20210106302
    Abstract: For calibration of internal dose in nuclear imaging, the dose model used for estimating internal dose in a patient is calibrated. One or more values of the dose model (e.g., a physics simulation, dose kernels, or a transport model) are set based on measured dose. The dose may be measured relative to specific tissues and/or isotopes, providing for tracer and tissue specific calibration. For example, dose from the tracer to be injected into the patient is estimated from emissions as well as measured by a dosimeter in a tissue mimicking tissue mimicking object. These doses are used to calibrate the dose model, which calibrated dose model is then used to determine internal dose for the patient.
    Type: Application
    Filed: September 10, 2020
    Publication date: April 15, 2021
    Inventors: Alexander Hans Vija, Michal Cachovan, Miesher Rodrigues