Patents by Inventor Alexander Oberdörster

Alexander Oberdörster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11310420
    Abstract: What is described are a method and a device, wherein two types of individual images are captured, namely a set of individual images captured simultaneously, and a further set of individual images captured in temporal succession. Among said two sets of individual images, individual images are selected which in combination result in a panoramic image.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: April 19, 2022
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Alexander Oberdoerster, Andreas Brueckner, Jacques Duparré, Frank Wippermann
  • Patent number: 11290649
    Abstract: In order to achieve a relatively small installation height of a multi-aperture imaging device having a one-line array of adjacently arranged optical channels, lenses of the optics of the optical channels are attached to a main side of a substrate by one or more lens holders and are mechanically connected via the substrate, the substrate being positioned such that the optical paths of the plurality of optical channels pass therethrough.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: March 29, 2022
    Inventors: Frank Wippermann, Andreas Brückner, Andreas Bräuer, Alexander Oberdörster
  • Patent number: 11244434
    Abstract: A multi-aperture imaging device that is, on the one hand, able to provide image information on a scene and, on the other hand, allows obtaining high lateral resolution and/or a wide total field of view, is described. The multi-aperture imaging device is provided with a first plurality of optical channels for projecting overlapping first partial fields of view of a total field of view on first image sensor areas of an image sensor of the multi-aperture imaging device, as well as with a second arrangement of optical channels for projecting at least a part of of the total field of view on a second image sensor area of the image sensor.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: February 8, 2022
    Inventors: Frank Wippermann, Andreas Brückner, Andreas Bräuer, Alexander Oberdörster
  • Patent number: 11106047
    Abstract: A multi-aperture imaging device includes an image sensor and an array of optical channels, wherein each optical channel includes an optic for imaging at least a part of a total field of view onto an image sensor region of the image sensor. The multi-aperture imaging device includes a beam-deflector including at least one beam-deflecting element for deflecting an optical path of an optical channel, wherein each optical channel is assigned a beam-deflecting element. The beam-deflecting element is configured to have a transparent state of a controllable surface based on first electric control and to have a reflecting state of the controllable surface based on a second electric control in order to deflect the optical path.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: August 31, 2021
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Frank Wippermann, Andreas Brückner, Jacques Duparré, Alexander Oberdörster
  • Patent number: 10873688
    Abstract: The fact that a beam-deflecting device can be produced cost-effectively and without any losses of optical quality of the multi-aperture imaging device is used when a carrier substrate is provided for the same, wherein the carrier substrate is common to the plurality of optical channels and is installed with a setting angle, i.e. oblique with respect to the image sensor in the multi-aperture imaging device such that a deflection angle of deflecting the optical path of each optical channel is based, on the one hand, on the setting angle and, on the other hand, on an individual inclination angle with respect to the carrier substrate of a reflecting facet of a surface of the beam-deflecting device facing the image sensor, the reflecting facet being allocated to the optical channel.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: December 22, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brueckner, Andreas Braeuer, Alexander Oberdoerster
  • Publication number: 20200382702
    Abstract: What is described are a method and a device, wherein two types of individual images are captured, namely a set of individual images captured simultaneously, and a further set of individual images captured in temporal succession. Among said two sets of individual images, individual images are selected which in combination result in a panoramic image.
    Type: Application
    Filed: August 18, 2020
    Publication date: December 3, 2020
    Inventors: Alexander OBERDOERSTER, Andreas BRUECKNER, Jacques DUPARRÉ, Frank WIPPERMANN
  • Publication number: 20200357103
    Abstract: A multi-aperture imaging device that is, on the one hand, able to provide image information on a scene and, on the other hand, allows obtaining high lateral resolution and/or a wide total field of view, is described. The multi-aperture imaging device is provided with a first plurality of optical channels for projecting overlapping first partial fields of view of a total field of view on first image sensor areas of an image sensor of the multi-aperture imaging device, as well as with a second arrangement of optical channels for projecting at least a part of of the total field of view on a second image sensor area of the image sensor.
    Type: Application
    Filed: May 20, 2020
    Publication date: November 12, 2020
    Inventors: Frank WIPPERMANN, Andreas BRÜCKNER, Andreas BRÄUER, Alexander OBERDÖRSTER
  • Patent number: 10732377
    Abstract: Providing a multi-aperture imaging device having a single-line array of optical channels arranged next to one another with and adjuster for channel-specifically changing a relative position between an image sensor region of a respective optical channel, the optics of the respective optical channel and a beam-deflecting device of the respective channel or for channel-specifically changing an optical characteristic of the optics of the respective optical channel or an optical characteristic of the beam-deflecting device relating to deflecting the optical path of the respective optical channel, and a storage having default values stored therein and/or a controller for converting sensor data to default values for channel-specifically controlling the adjusting device is used to reduce requirements to, for example, manufacturing tolerances of the multi-aperture imaging device and/or requirements to the multi-aperture imaging device as regards position and shape invariance relative to temperature variations such tha
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: August 4, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brueckner, Andreas Braeuer, Alexander Oberdoerster
  • Publication number: 20200221032
    Abstract: In order to achieve a relatively small installation height of a multi-aperture imaging device having a one-line array of adjacently arranged optical channels, lenses of the optics of the optical channels are attached to a main side of a substrate by one or more lens holders and are mechanically connected via the substrate, the substrate being positioned such that the optical paths of the plurality of optical channels pass therethrough.
    Type: Application
    Filed: March 20, 2020
    Publication date: July 9, 2020
    Inventors: Frank WIPPERMANN, Andreas BRÜCKNER, Andreas BRÄUER, Alexander OBERDÖRSTER
  • Patent number: 10701340
    Abstract: A 3D multi-aperture imaging device that is, on the one hand, able to provide 3D information on a scene and, on the other hand, allows obtaining high lateral resolution and/or a wide total field of view, is described. The 3 D multi-aperture imaging device is provided with a first plurality of optical channels for projecting overlapping first partial fields of view of a total field of view on first image sensor areas of an image sensor of the 3D multi-aperture imaging device, as well as with a second plurality of optical channels for projecting overlapping second partial fields of view of the total field of view on second image sensor areas of the image sensor.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: June 30, 2020
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brückner, Andreas Bräuer, Alexander Oberdörster
  • Patent number: 10630902
    Abstract: In order to achieve a relatively small installation height of a multi-aperture imaging device having a one-line array of adjacently arranged optical channels, lenses of the optics of the optical channels are attached to a main side of a substrate by one or more lens holders and are mechanically connected via the substrate, the substrate being positioned such that the optical paths of the plurality of optical channels pass therethrough.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: April 21, 2020
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brückner, Andreas Bräuer, Alexander Oberdörster
  • Publication number: 20200057310
    Abstract: A multi-aperture imaging device includes an image sensor and an array of optical channels, wherein each optical channel includes an optic for imaging at least a part of a total field of view onto an image sensor region of the image sensor. The multi-aperture imaging device includes a beam-deflector including at least one beam-deflecting element for deflecting an optical path of an optical channel, wherein each optical channel is assigned a beam-deflecting element. The beam-deflecting element is configured to have a transparent state of a controllable surface based on first electric control and to have a reflecting state of the controllable surface based on a second electric control in order to deflect the optical path.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 20, 2020
    Inventors: Frank WIPPERMANN, Andreas BRÜCKNER, Jacques DUPARRÉ, Alexander OBERDÖRSTER
  • Patent number: 10567629
    Abstract: The fact that a beam-deflecting device can be produced cost-effectively and without any losses of optical quality of the multi-aperture imaging device is used when a carrier substrate is provided for the same, wherein the carrier substrate is common to the plurality of optical channels and is installed with a setting angle, i.e. oblique with respect to the image sensor in the multi-aperture imaging device such that a deflection angle of deflecting the optical path of each optical channel is based, on the one hand, on the setting angle and, on the other hand, on an individual inclination angle with respect to the carrier substrate of a reflecting facet of a surface of the beam-deflecting device facing the image sensor, the reflecting facet being allocated to the optical channel.
    Type: Grant
    Filed: February 17, 2018
    Date of Patent: February 18, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brueckner, Andreas Braeuer, Alexander Oberdoerster
  • Patent number: 10560617
    Abstract: A device includes a housing having a first transparent area and a second transparent area and a multi-aperture imaging device arranged inside the housing and including a beam deflector. The device includes a first diaphragm and a second diaphragm, the portable device having a first operating state and a second operating state. In the first operating state, the beam deflector deflects an optical path of the imaging device such that it passes through the first transparent area and that the second diaphragm at least partly optically closes the second transparent area. In the second operating state, the beam deflector deflects the optical path of the imaging device such that it passes through the second transparent area. In the second operating state, the first diaphragm at least partly optically closes the first transparent area.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: February 11, 2020
    Inventors: Frank Wippermann, Andreas Brückner, Andreas Bräuer, Alexander Oberdörster
  • Publication number: 20200029023
    Abstract: A device includes an image sensor and an array of optical channels, each optical channel including an optic for projecting a partial field of view of a total field of view onto an image sensor area of the image sensor. A first optical channel of the array is configured to image a first partial field of view of the total field of view. A second optical channel of the array is configured to image a second partial field of view of the total field of view. The device includes a calculating unit configured to obtain image information of the first and second partial fields of view on the basis of the imaged partial fields of view, and to obtain image information of the total field of view, and to combine the image information of the partial fields of view with the image information of the total field of view so as to generate combined image information of the total field of view.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 23, 2020
    Inventors: Frank WIPPERMANN, Andreas BRÜCKNER, Jacques DUPARRÉ, Alexander OBERDÖRSTER
  • Publication number: 20190373154
    Abstract: The fact that a beam-deflecting device can be produced cost-effectively and without any losses of optical quality of the multi-aperture imaging device is used when a carrier substrate is provided for the same, wherein the carrier substrate is common to the plurality of optical channels and is installed with a setting angle, i.e. oblique with respect to the image sensor in the multi-aperture imaging device such that a deflection angle of deflecting the optical path of each optical channel is based, on the one hand, on the setting angle and, on the other hand, on an individual inclination angle with respect to the carrier substrate of a reflecting facet of a surface of the beam-deflecting device facing the image sensor, the reflecting facet being allocated to the optical channel.
    Type: Application
    Filed: August 14, 2019
    Publication date: December 5, 2019
    Inventors: Frank WIPPERMANN, Andreas BRUECKNER, Andreas BRAEUER, Alexander OBERDOERSTER
  • Patent number: 10362229
    Abstract: A multi-aperture imaging device includes a one-line array of adjacently arranged optical channels and beam-deflecting unit for deflecting an optical path of the optical channels. The beam-deflecting unit includes a first position and a second position between which the beam-deflecting unit is translationally moveable along a line extension direction of the one-line array. The beam-deflecting unit is configured such that it deflects the optical path of each optical channel into mutually different directions depending on whether it is located in the first position or in the second position.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: July 23, 2019
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brückner, Andreas Bräuer, Alexander Oberdörster
  • Publication number: 20190222768
    Abstract: A multi-aperture imaging device includes an image sensor and an array of optical channels, each optical channel including optics for projecting a partial field of view of a total field of view on an image sensor area of the image sensor. The multi-aperture imaging device includes a beam deflector for deflecting an optical path of the optical channels and an optical image stabilizer for an image stabilization along a first image axis by generating a translatory relative movement between the image sensor and the array and for an image stabilization along a second image axis by generating a rotational movement of the beam deflector.
    Type: Application
    Filed: March 21, 2019
    Publication date: July 18, 2019
    Inventors: Frank WIPPERMANN, Andreas BRUECKNER, Andreas BRAEUER, Alexander OBERDOERSTER
  • Patent number: 10334172
    Abstract: A multi-aperture imaging device includes an image sensor, a single-line array of juxtaposed optical channels, wherein each optical channel includes optics for projecting a partial area of an object area on an image sensor area of the image sensor and beam deflector for deflecting an optical path of the optical channels. The multi-aperture imaging device includes an actuator unit for generating a relative movement between the image sensor, the single-line array and the beam deflector, wherein the actuator unit is arranged such that the same is arranged at least partly between two planes that are spanned by sides of a cuboid, wherein the sides of the cuboid are oriented parallel to one another as well to a line extension direction of the single-line array and part of the optical path of the optical channels between the image sensor and the beam deflector.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: June 25, 2019
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brückner, Andreas Bräuer, Alexander Oberdörster
  • Patent number: 10291852
    Abstract: A multi-aperture imaging device includes an image sensor and an array of optical channels, each optical channel including optics for projecting a partial field of view of a total field of view on an image sensor area of the image sensor. The multi-aperture imaging device includes a beam deflector for deflecting an optical path of the optical channels and an optical image stabilizer for an image stabilization along a first image axis by generating a translatory relative movement between the image sensor and the array and for an image stabilization along a second image axis by generating a rotational movement of the beam deflector.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: May 14, 2019
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Wippermann, Andreas Brueckner, Andreas Braeuer, Alexander Oberdoerster