Patents by Inventor Alexander V. Krasnov

Alexander V. Krasnov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11095088
    Abstract: A multi-pass coaxial molecular gas laser is described in both symmetrical and asymmetrical configuration. An anode vessel receives lasing gas and the gas flows through one or more plasma channels to a cathode vessel which receives the gas and redirects it in the closed system. A second anode vessel may alternatively be provided to double length of the plasma channel and increase surface area exposure of the optical beam to the energized gas. Non-laminar gas flow may be created using spiral nozzles at the entrance of the optical resonator.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: August 17, 2021
    Assignee: ZOYKA LLC
    Inventor: Alexander V. Krasnov
  • Publication number: 20170179668
    Abstract: Apparatus and methods relating to a gas flow laser are disclosed herein. The gas flow laser includes an eccentrically aligned inner casing within a cylindrical or oval outer shell thereby creating a narrow gas flow path in which the speed of the gas flow may approach sonic or supersonic speeds. An optical resonator is within the narrow gas flow path, and one or more diffusers are located downstream of the optical resonator to improve operating efficiency of the gas flow laser.
    Type: Application
    Filed: March 30, 2015
    Publication date: June 22, 2017
    Inventor: Alexander V. KRASNOV
  • Publication number: 20040105478
    Abstract: Disclosed is a gas laser utilizing radio frequency excitation in the area of sonic or supersonic/subsonic transfer gas flow. The laser uses various types of gases and mixtures of gases as the active medium using radio frequency excitation. The gas is supplied into a supersonic nozzle for acceleration of the active gaseous flow to supersonic or deceleration to high subsonic speeds in order to provide intensive dynamic cooling of the active gas medium. The gas is excited using radio frequency excitation in the critical area of the supersonic nozzle or downstream therefrom. The radio frequency action and excitation can also occur within the optical resonator region which is located within the supersonic area of the nozzle.
    Type: Application
    Filed: October 1, 2003
    Publication date: June 3, 2004
    Inventor: Alexander V. Krasnov
  • Patent number: 6636545
    Abstract: Disclosed is a gas laser utilizing radio frequency excitation in the area of sonic or supersonic/subsonic transfer gas flow. The laser uses various types of gases and mixtures of gases as the active medium using radio frequency excitation. The gas is supplied into a supersonic nozzle for acceleration of the active gaseous flow to supersonic or deceleration to high subsonic speeds in order to provide intensive dynamic cooling of the active gas medium. The gas is excited using radio frequency excitation in the critical area of the supersonic nozzle or downstream therefrom. The radio frequency action and excitation can also occur within the optical resonator region which is located within the supersonic area of the nozzle.
    Type: Grant
    Filed: March 5, 2001
    Date of Patent: October 21, 2003
    Inventor: Alexander V. Krasnov
  • Publication number: 20020097767
    Abstract: Disclosed is a gas laser utilizing radio frequency excitation in the area of sonic or supersonic/subsonic transfer gas flow. The laser uses various types of gases and mixtures of gases as the active medium using radio frequency excitation. The gas is supplied into a supersonic nozzle for acceleration of the active gaseous flow to supersonic or deceleration to high subsonic speeds in order to provide intensive dynamic cooling of the active gas medium. The gas is excited using radio frequency excitation in the critical area of the supersonic nozzle or downstream therefrom. The radio frequency action and excitation can also occur within the optical resonator region which is located within the supersonic area of the nozzle.
    Type: Application
    Filed: March 5, 2001
    Publication date: July 25, 2002
    Inventor: Alexander V. Krasnov
  • Patent number: 6198762
    Abstract: Disclosed is a gas laser utilizing radio frequency discharge excitation in the area of sonic or supersonic/subsonic transfer gas flow. The laser uses various types of gases and mixtures of gases as the active medium and provides for RF or UV pre-ionization of the gaseous medium before using radio frequency discharge excitation. The gas is supplied into a receiver, and has downstream therefrom a supersonic nozzle for acceleration of the active gaseous flow to high subsonic or supersonic speeds in order to provide intensive dynamic cooling of the active gas medium. The gas is excited using radio frequency discharge excitation in the critical area of the supersonic nozzle or downstream therefrom. The radio frequency discharge and excitation can also occur within the optical resonator region which is located within the supersonic area of the nozzle. The present invention provides compact, efficient and super-powerful continuous, quasi-continuous and pulse laser systems with wavelengths from 2.03 mkm to 10.
    Type: Grant
    Filed: March 18, 1998
    Date of Patent: March 6, 2001
    Inventor: Alexander V. Krasnov
  • Patent number: 5682400
    Abstract: Disclosed is a gas laser utilizing high frequency discharge excitation in the area of sonic or supersonic/subsonic transfer gas flow. The laser uses various types of gases and mixtures of gases as the active medium and provides for pre-ionization of the gaseous medium before using high frequency discharge excitation. The gas is supplied into a receiver, and has downstream therefrom a supersonic nozzle for acceleration of the active gaseous flow to high subsonic or supersonic speeds in order to provide intensive dynamic cooling of the active gas medium. The gas is excited using high frequency discharge excitation in the critical area of the supersonic nozzle or downstream therefrom. The high frequency discharge and excitation can also occur within the optical resonator region which is located within the supersonic area of the nozzle. The present invention provides compact, efficient and super-powerful continuous, quasi-continuous and pulse laser systems with wavelengths from 0.3 mkm to 10.
    Type: Grant
    Filed: September 27, 1995
    Date of Patent: October 28, 1997
    Inventor: Alexander V. Krasnov