Patents by Inventor Alexander Z. Voskoboynikov

Alexander Z. Voskoboynikov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210402384
    Abstract: This invention relates to hexahydrocyclopenta[e]-as-indacen-1-yl and octahydrobenzo[e]-as-indacen-1-yl based catalyst complexes represented by the formula: TyLAMXn-2 wherein: M is a group 3-6 metal; n is the oxidation state of M; A is a substituted or unsubstituted polycyclic arenyl ligand bonded to M wherein the polycyclic ligand contains an indenyl fragment with two partially unsaturated rings annulated to the phenyl ring of the indenyl ligand fragment; L is a substituted or unsubstituted monocyclic or polycyclic arenyl ligand bonded to M, or a substituted or unsubstituted monocyclic or polycyclic heteroarenyl ligand bonded to M, or is represented by the formula JR?z-y where J is a group 15 or 16 heteroatom bonded to M, R? is a substituted or unsubstituted hydrocarbyl substituent bonded to J, and z is 1 or 2; T is a bridging group; y is 1 or 0; and each X is independently a univalent anionic ligand, or two Xs are joined and bound to the metal atom to form a metallocycle ring, or two Xs are joined to for
    Type: Application
    Filed: June 23, 2021
    Publication date: December 30, 2021
    Inventors: Jo Ann M. Canich, Vyatcheslav V. Izmer, Dmitry S. Kononovich, Alexander Z. Voskoboynikov
  • Patent number: 11203654
    Abstract: The present disclosure relates to bis(aryl phenolate) Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization as the bis(aryl phenolate) Lewis base catalysts are stable at high polymerization temperatures and have good activity at the high polymerization temperatures. The stable catalysts with good activity can provide formation of polymers having high molecular weights and the ability to make an increased amount of polymer in a given reactor, as compared to conventional catalysts. Hence, the present disclosure demonstrates highly active catalysts capable of operating at high reactor temperatures while producing polymers with controlled molecular weights and or robust isotacticity.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: December 21, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Georgy P. Goryunov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Irene C. Cai, Hua Zhou, Jo Ann M. Canich
  • Patent number: 11192963
    Abstract: Catalyst system, the catalyst system comprising (i) at least one metallocene complex of formula (I), (I) wherein Mt1 is Hf, X is a sigma-donor ligand, R1, R2, R3 are the same or different from each other and can be hydrogen or a saturated linear or branched C1-C10 alkyl, whereby the alkyl group can optionally contain up to 2 heteroatoms belonging to groups 14-16 of the periodic table, or R1 and R2 or R2 and R3 can form a ring having 4 to 6 C-atoms and 1 to 3 double bonds, R4 and R5 are the same or different from each other and can be saturated linear or branched C1-C10 alkyl, C5-C10 aryl, C6-C20 alkylaryl or C6-C20 arylalkyl groups, which can optionally contain up to 2 heteroatoms belonging to groups 14-16 of the periodic table, n can be 1 to 5, Ar is a C6-C20-aryl or -heteroarylgroup, which can be unsubstituted or substituted by 1 to 5 linear or branched C1-C10 alkyl group(s), and (ii) a boron containing cocatalyst.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: December 7, 2021
    Assignee: BOREALIS AG
    Inventors: Anna Fait, Noureddine Ajellal, Luigi Maria Cristoforo Resconi, Vyatcheslav V. Izmer, Dmitry S. Kononovich, Oleg Samsonov, Alexander Z. Voskoboynikov, Rafael Sablong, Timo Sciarone
  • Patent number: 11180580
    Abstract: This invention relates to transition metal complexes represented by the formula: catalyst systems comprising the complexes, and polymerization methods for olefinic monomers using the catalyst systems. In said formula, M is a transition metal; E is NR2, CR3R4, O, S, or SiR5R6; Q is optional substitution; p is an integer ranging from 0 to 3; L is an optional neutral ligand; m is an integer ranging from 0 to 3; X is an anionic leaving group; n is 1 or 2, with m+n being 4 or less; J is a linker group contributing two or three atoms that are located within a first chelate ring; R1 and R1? are independently a hydrocarbyl group or a trihydrocarbylsilyl group; R2 is a hydrocarbyl group; R3 and R4 are independently H, a hydrocarbyl group, or a trihydrocarbylsilyl group; and R5 and R5 are independently a hydrocarbyl group.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: November 23, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Jo Ann M. Canich, Mikhail I. Sharikov, Georgy P. Goryunov, Pavel S. Kulyabin, Dmitry V. Uborsky, Alexander Z. Voskoboynikov
  • Publication number: 20210292355
    Abstract: A complex of formula (I): (I?) M is Hf; each X is a sigma ligand; L is a bridge of formula -(ER82)y—; y is 1 or 2; E is C or Si; each R8 is independently a C1-C20-hydrocarbyl, tri(C1-C20-alkyl)silyl, C6-C20- aryl, C7-C20-arylalkyl or C7-C20-alkylaryl or L is an alkylene group such as methylene or ethylene; Ar and Ar? are each independently an aryl or heteroaryl group optionally substituted by 1 to 3 groups R1 or R1? respectively; R1 and R1? are each independently the same or can be different and are a linear or branched C1-C6-alkyl group, C7-20 arylalkyl, C7-20 alkylaryl group or C6-20 aryl group with the proviso that if there are four or more R1 and R1? groups present in total, one or more of R1 and R1? is other than tert butyl; R2 and R2? are the same or are different and are a CH2—R9 group, with R9 being H or linear or branched C1-C6-alkyl group, C3-8 cycloalkyl group, C6-10 aryl group; each R is a —CH2—, —CHRx- or C(Rx)2-group wherein Rx is C1-4 alkyl and where m is 2-6; R5 is a linear or branched C1-C6-a
    Type: Application
    Filed: June 28, 2019
    Publication date: September 23, 2021
    Inventors: Noureddine AJELLAL, Ville VIRKKUNEN, Luigi Maria Cristoforo RESCONI, Vyatcheslav V. IZMER, Dmitry S. KONONOVICH, Alexander Z. VOSKOBOYNIKOV, Jingbo WANG, Simon SCHWARZENBERGER, Wilfried Peter TÖLTSCH
  • Publication number: 20210269559
    Abstract: The present disclosure relates to Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization. In at least one embodiment, the catalyst compounds belong to a family of compounds comprising amido-phenolate-heterocyclic ligands coordinated to group 4 transition metals. The tridendate ligand may include a central neutral hetrocyclic donor group, an anionic phenolate donor, and an anionic amido donor. In some embodiments, the present disclosure provides a catalyst system comprising an activator and a catalyst of the present disclosure. In some embodiments, the present disclosure provides a polymerization process comprising a) contacting one or more olefin monomers with a catalyst system comprising: i) an activator and ii) a catalyst of the present disclosure.
    Type: Application
    Filed: February 11, 2021
    Publication date: September 2, 2021
    Inventors: Georgy P. Goryunov, Mikhail I. Sharikov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Jo Ann M. Canich
  • Publication number: 20210269561
    Abstract: Metallocene complexes represented by the structure below are useful for alpha olefin oligomerization in the presence of an activator to generate polyalphaolefins having a high percentage of vinylidene termination and relatively low Mn values. M is a group 4 transition metal. A is a bridging group having one bridging atom extending between a first indenyl ring and a second indenyl ring. Each X is independently an anionic ligand, or two Xs are joined and bound to M to form a metallocycle ring, or two Xs are joined to form a chelating ligand, a diene ligand, or an alkylidene ligand. R1, R1?, R3, R3?, R4, R4?, R7 and R7? are hydrogen. R5, R5?, R6, and R6? are independently a C1-C10, optionally substituted, hydrocarbyl group, or R5 and R6 and/or R5? and R6? are bonded together to form an optionally substituted hydrocarbyl ring structure.
    Type: Application
    Filed: February 11, 2021
    Publication date: September 2, 2021
    Inventors: Jo Ann M. Canich, Jian Yang, Alexander Z. Voskoboynikov, Andrey F. Asachenko, Oleg V. Samsonov, Georgy P. Goryunov
  • Publication number: 20210238319
    Abstract: This invention relates to a compound represented by the formula: TyLAMXn-2 wherein: A is a substituted or unsubstituted tetrahydro-as-indacenyl group bonded to M; L is substituted or unsubstituted monocyclic or polycyclic arenyl ligand or monocyclic or polycyclic heteroarenyl ligand bonded to M; M is a group 3, 4, 5, or 6 transition metal (preferably group 4); T is a bridging group bonded to L and A; y is 0 or 1, indicating the absence or presence of T; X is a leaving group, typically a univalent anionic ligand, or two Xs are joined and bound to the metal atom to form a metallocycle ring, or two Xs are joined to form a chelating ligand, a diene ligand, or an alkylidene; n is the oxidation state of M and is 3, 4, 5, or 6.
    Type: Application
    Filed: March 31, 2017
    Publication date: August 5, 2021
    Inventors: Jo Ann M. Canich, Vyatcheslav V. Izmer, Dmitry S. Kononovich, Alexander Z. Voskoboynikov
  • Publication number: 20210108006
    Abstract: Catalyst system, the catalyst system comprising (i) at least one metallocene complex of formula (I), (I) wherein Mt1 is Hf, X is a sigma-donor ligand, R1, R2, R3 are the same or different from each other and can be hydrogen or a saturated linear or branched C1-C10 alkyl, whereby the alkyl group can optionally contain up to 2 heteroatoms belonging to groups 14-16 of the periodic table, or R1 and R2 or R2 and R3 can form a ring having 4 to 6 C-atoms and 1 to 3 double bonds, R4 and R5 are the same or different from each other and can be saturated linear or branched C1-C10 alkyl, C5-C10 aryl, C6-C20 alkylaryl or C6-C20 arylalkyl groups, which can optionally contain up to 2 heteroatoms belonging to groups 14-16 of the periodic table, n can be 1 to 5, Ar is a C6-C20-aryl or -heteroarylgroup, which can be unsubstituted or substituted by 1 to 5 linear or branched C1-C10 alkyl group(s), and (ii) a boron containing cocatalyst.
    Type: Application
    Filed: March 28, 2018
    Publication date: April 15, 2021
    Inventors: Anna FAIT, Noureddine AJELLAL, Luigi Maria Cristoforo RESCONI, Vyatcheslav V. IZMER, Dmitry S. KONONOVICH, Oleg SAMSONOV, Alexander Z. VOSKOBOYNIKOV, Rafael SABLONG, Timo SCIARONE
  • Publication number: 20210095057
    Abstract: Catalyst system, the catalyst system comprising (i) at least one metallocene complex of formula (I) wherein Mt1 is Hf, X is a sigma-donor ligand, R1, R2, R3 are the same or different from each other and can be hydrogen or a saturated linear or branched C1-C10 alkyl, whereby the alkyl group can optionally contain up to 2 heteroatoms belonging to groups 14-16 of the periodic table, or R1 and R2 or R2 and R3 can form a ring having 4 to 6 C-atoms and 1 to 3 double bonds, R4 and R5 are the same or different from each other and can be saturated linear or branched C1-C10 alkyl, C5-C10 aryl, C6-C20 alkylaryl or C6-C20 arylalkyl groups, which can optionally contain up to 2 heteroatoms belonging to groups 14-16 of the periodic table, n can be 1 to 5, Ar is a C6-C20-aryl or -heteroaryl group, which can be unsubstituted or substituted by 1 to 5 linear or branched C1-C10 alkyl group(s), and (ii) an aluminoxane cocatalyst and (iii) optionally an aluminium alkyl compound AI(R7)3, with R7 being a linear or branched C2-C8-alk
    Type: Application
    Filed: March 28, 2018
    Publication date: April 1, 2021
    Inventors: Luigi Maria Cristoforo RESCONI, Noureddine AJELLAL, Anna FAIT, Irfan SAEED, Maria RANIERI, David QUIN, Vyatcheslav V. IZMER, Dmitry S. KONONOVICH, Oleg SAMSONOV, Alexander Z. VOSKOBOYNIKOV
  • Publication number: 20210087305
    Abstract: A metal complex of the formula (1) TCyLMZp (1), wherein M is a group 4 metal, Z is an anionic ligand, p is the number 1 or 2, TCy is a thiophene-fused cyclopentadienyl-type ligand of the formula (2) is described. Methods of making and using the metal complex are also described.
    Type: Application
    Filed: December 13, 2018
    Publication date: March 25, 2021
    Applicant: ARLANXEO NETHERLANDS B.V.
    Inventors: Alexandra BERTHOUD, Maxence Valla, Georgy P. GORYUNOV, Oleg V, SAMSONOV, Dmitry Y. MLADENTSEV, Dmitry V. UBORSKY, Alexander Z. VOSKOBOYNIKOV
  • Publication number: 20210079032
    Abstract: The invention relates to a metallocene complexes according to formula (I), (I) wherein R1 and R2 are independently selected from H, an alkyl or an aryl group, wherein R3 is a C1-C10 alkyl group, wherein R? is selected from H, an alkyl group, an aryl group and wherein different R? substituents can be connected to form a ring structure and wherein B is a 1,2 phenylene bridging moiety, which can be optionally substituted, wherein Mt is selected from Ti, Zr and Hf, X is an anionic ligand, z is the number of X groups and equals the valence of Mt minus 2. The invention also relates to a catalyst comprising the reaction product of the metallocene complex and a cocatalyst. Further the invention relates to a (co)polymerisation process of olefinic monomers.
    Type: Application
    Filed: January 23, 2019
    Publication date: March 18, 2021
    Inventors: Coen HENDRIKSEN, Nicolaas Hendrika FRIEDERICHS, Alexander Z. VOSKOBOYNIKOV, Antonio VITTORIA, Vincenzo BUSICO, Roberta CIPULLO, Dmitry Y. MLADENTSEV, Bogdan A. GUZEEV, Dmitry V. UBORSKY
  • Publication number: 20210017307
    Abstract: New bisindenyl ligand complexes and catalysts comprising those complexes. The invention is directed to improving the manufacturing of specific C1-symmetric bisindenyl complexes by modifying one of the indenyl ligands in order to improve the selectivity of the complex synthesis towards the desired anti-isomer, increase the yield and simplify the purification of the complex. The invention also relates to the use of the new bisindenyl metallocene catalysts for the production of polypropylene homopolymers or propylene copolymers.
    Type: Application
    Filed: March 18, 2019
    Publication date: January 21, 2021
    Inventors: Vyatcheslav V. IZMER, Dmitry S. KONONOVICH, Alexander Z. VOSKOBOYNIKOV, Ville VIRKKUNEN, Luigi Maria Cristoforo RESCONI
  • Publication number: 20210017303
    Abstract: The present disclosure relates to silyl-bridged pyridylamide transition metal complexes and catalyst systems including silyl-bridged pyridylamide transition metal complexes and their use in polymerization processes to produce polyolefin polymers, such as polyethylene polymers and polypropylene polymers, from catalyst systems including one or more olefin polymerization catalysts, at least one activator, and an optional support.
    Type: Application
    Filed: June 23, 2020
    Publication date: January 21, 2021
    Inventors: John R. Hagadorn, Jo Ann M. Canich, Pavel S. Kulyabin, Dmitry V. Uborsky, Alexander Z. Voskoboynikov
  • Patent number: 10815318
    Abstract: Quinolinyldiamido transition metal complexes are disclosed for use in alkene polymerization to produce multimodal polyolefins.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: October 27, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Patrick J. Palafox, Peijun Jiang, Yaohua Gao, Xin Chen, Georgy P. Goryunov, Mikhail I. Sharikov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov
  • Patent number: 10807997
    Abstract: The present disclosure provides methods for making quinolinyldiamine products from quinolinyl starting materials. In addition, the quinolinyldiamines can be used as ligands or ligand precursors for catalysts, e.g. for use in olefin polymerization.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: October 20, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Oleg V. Samsonov, Mikhail I. Sharikov, Georgy P. Goryunov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, Michelle E. Titone, John R. Hagadorn, Jo Ann M. Canich
  • Publication number: 20200308315
    Abstract: This invention relates to transition metal complexes represented by the formula: catalyst systems comprising the complexes, and polymerization methods for olefinic monomers using the catalyst systems. In said formula, M is a transition metal; E is NR2, CR3R4, O, S, or SiR5R6; Q is optional substitution; p is an integer ranging from 0 to 3; L is an optional neutral ligand; m is an integer ranging from 0 to 3; X is an anionic leaving group; n is 1 or 2, with m+n being 4 or less; J is a linker group contributing two or three atoms that are located within a first chelate ring; R1 and R1? are independently a hydrocarbyl group or a trihydrocarbylsilyl group; R2 is a hydrocarbyl group; R3 and R4 are independently H, a hydrocarbyl group, or a trihydrocarbylsilyl group; and R5 and R5 are independently a hydrocarbyl group.
    Type: Application
    Filed: March 25, 2020
    Publication date: October 1, 2020
    Inventors: John R. Hagadorn, Jo Ann M. Canich, Mikhail I. Sharikov, Georgy P. Goryunov, Pavel S. Kulyabin, Dmitry V. Uborsky, Alexander Z. Voskoboynikov
  • Publication number: 20200255555
    Abstract: The present disclosure relates to Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization as the Lewis base catalysts can be stable at high polymerization temperatures and have good activity at the high polymerization temperatures. The stable catalysts with good activity can provide formation of polymers having high melting points, high isotacticity, and controllable molecular weights, and the ability to make an increased amount of polymer in a given reactor, as compared to conventional catalysts. Hence, the present disclosure demonstrates highly active catalysts capable of operating at high reactor temperatures while producing polymers with controlled molecular weights and or robust isotacticity.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 13, 2020
    Inventors: Georgy P. Goryunov, Oleg V. Samsonov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, Jo Ann M. Canich, John R. Hagadorn
  • Publication number: 20200254431
    Abstract: The present disclosure relates to bis(aryl phenolate) Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization as the bis(aryl phenolate) Lewis base catalysts are stable at high polymerization temperatures and have good activity at the high polymerization temperatures. The stable catalysts with good activity can provide formation of polymers having high molecular weights and the ability to make an increased amount of polymer in a given reactor, as compared to conventional catalysts. Hence, the present disclosure demonstrates highly active catalysts capable of operating at high reactor temperatures while producing polymers with controlled molecular weights and or robust isotacticity.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 13, 2020
    Inventors: Georgy P. Goryunov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Irene C. Cai, Hua Zhou, Jo Ann M. Canich
  • Publication number: 20200255553
    Abstract: This invention relates to transition metal complexes of a dianionic, tridentate ligand that features a central neutral heterocyclic Lewis base and two phenolate donors, where the tridentate ligand coordinates to the metal center to form two eight-membered rings. Preferably the bis(phenolate) complexes are represented by Formula (I): where M, L, X, m, n, E, E?, Q, R1, R2, R3, R4, R1?, R2?, R3?, R4?, A1, A1?, are as defined herein, where A1QA1? are part of a heterocyclic Lewis base containing 4 to 40 non-hydrogen atoms that links A2 to A2? via a 3-atom bridge with Q being the central atom of the 3-atom bridge.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 13, 2020
    Inventors: Georgy P. Goryunov, Mikhail I. Sharikov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Michelle E. Titone, Alex E. Carpenter, Catherine A. Faler, Jo Ann M. Canich