Patents by Inventor Alexey V. Ustinov

Alexey V. Ustinov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160379100
    Abstract: The present invention relates to a method for allocating information about an object. Moreover, the present invention relates to a method for labeling an object for example a method for tracking or identifying an object containing a predetermined information. In addition, a method for providing a security feature to an object is provided as well as a kit for enabling the same. That is, the present invention relates to a method wherein an information about an object is converted into a binary code and said binary code is assigned to a set of compounds having specific peaks in a mass spectrum when measured by mass spectrometry analysis of said set of compounds.
    Type: Application
    Filed: July 3, 2014
    Publication date: December 29, 2016
    Inventors: Vladimir A. Brylev, Vladimir A. Koeshun, Artem P. Topolyan, Alexey V. Ustinov
  • Patent number: 8633308
    Abstract: Described herein are compounds and methods that prevent the viral infection of cells. The compounds and methods described herein minimize viral resistance and maximize the number of targeted viruses. Additionally, the compounds and methods minimize the toxicity toward uninfected cells.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: January 21, 2014
    Assignee: The Governors of The University of Alberta
    Inventors: Luis M. Schang, Mireilli R. St. Vincent, Alexey V. Ustinov
  • Publication number: 20120135954
    Abstract: Described herein are compounds and methods that prevent the viral infection of cells. The compounds and methods described herein minimize viral resistance and maximize the number of targeted viruses. Additionally, the compounds and methods minimize the toxicity toward uninfected cells.
    Type: Application
    Filed: February 27, 2008
    Publication date: May 31, 2012
    Inventors: Luis M. Schang, Mireilli R. St. Vincent, Alexey V. Ustinov
  • Publication number: 20040135139
    Abstract: A method for fabricating a closed-form Josephson junction includes etching the inner shape of the closed-form junction on the chip, depositing a negative photoresist material over the etched chip, and flood exposing the backside of the chip with ultraviolet radiation. The photoresist is developed and then baked onto the chip. The baked photoresist serves as a mask for subsequent etching of the exterior of the closed-form Josephson junction. A shaped Josephson junction is fabricated with junction widths between about 0.1 &mgr;m and about 1 &mgr;m and an inner diameter ranging between about 1 &mgr;m and about 1000 &mgr;m.
    Type: Application
    Filed: December 11, 2003
    Publication date: July 15, 2004
    Inventors: Yuri Koval, Alexey V. Ustinov, Jeremy P. Hilton
  • Publication number: 20040095803
    Abstract: A method and apparatus for inserting fluxons into an annular Josephson junction is disclosed. Fluxon injection according to the present invention is based on local current injection into one of the superconducting electrodes of the junction. By choosing an appropriate value for the injection current, which depends upon the spacing between injecting leads among other factors, the residual fluxon pinning can be reduced to a very small level. Fluxon injection according to the present invention provides for fully controlling the trapping of individual fluxons in annular Josephson junctions and is reversible to a state of zero fluxons without heating the Josephson above its critical temperature. Fluxon injection according to the present invention can be used for preparing the working state of fluxon oscillators, clock references, radiation detectors, and shaped junctions that may be used as qubits for quantum computing.
    Type: Application
    Filed: September 26, 2003
    Publication date: May 20, 2004
    Applicant: D-Wave Systems, Inc.
    Inventor: Alexey V. Ustinov
  • Patent number: 6728131
    Abstract: A method for inserting fluxons into an annular Josephson junction is disclosed. Fluxon injection according to the present invention is based on local current injection into one of the superconducting electrodes of the junction. By choosing an appropriate value for the injection current, which depends upon the spacing between injecting leads among other factors, the residual fluxon pinning can be reduced to a very small level. Fluxon injection according to the present invention provides for fully controlling the trapping of individual fluxons in annular Josephson junctions and is reversible to a state of zero fluxons without heating the Josephson above its critical temperature. Fluxon injection according to the present invention can be used for preparing the working state of fluxon oscillators, clock references, radiation detectors and shaped junctions that may be used as qubits for quantum computing.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: April 27, 2004
    Assignee: D-Wave Systems, Inc.
    Inventor: Alexey V. Ustinov
  • Patent number: 6627915
    Abstract: A superconducting qubit is presented. The qubit is a shaped long Josephson junction with a magnetic fluxon such that, in the presence of an externally applied magnetic field, a fluxon potential energy function indicating a plurality of pinning sites in the qubit is produced. In one embodiment, a heart-shaped Josephson junction is formed where a trapped fluxon has a double-welled potential energy function, indicating two pinning sites, when the junction is placed in an externally applied magnetic field. The qubit is manipulated by preparing an initial state, creating a superposition of the two states by decreasing the magnetic field, evolving of the quantum state with time, freezing in a final state by increasing the magnetic field, and reading out the final state. In other embodiments, qubit exhibiting potential energy functions having any number of pinning sites can be realized.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: September 30, 2003
    Assignee: D-Wave Systems, Inc.
    Inventors: Alexey V. Ustinov, Andreas Walraff, Yu Koval
  • Publication number: 20030068832
    Abstract: A method for fabricating a closed-form Josephson junction includes etching the inner shape of the closed-form junction on the chip, depositing a negative photoresist material over the etched chip, and flood exposing the backside of the chip with ultraviolet radiation. The photoresist is developed and then baked onto the chip. The baked photoresist serves as a mask for subsequent etching of the exterior of the closed-form Josephson junction. A shaped Josephson junction is fabricated with junction widths between about 0.1 &mgr;m and about 1 &mgr;m and an inner diameter ranging between about 1 &mgr;m and about 1000 &mgr;m.
    Type: Application
    Filed: August 28, 2002
    Publication date: April 10, 2003
    Inventors: Yuri Koval, Alexey V. Ustinov, Jeremy P. Hilton
  • Publication number: 20020177529
    Abstract: A method and apparatus for inserting fluxons into an annular Josephson junction is disclosed. Fluxon injection according to the present invention is based on local current injection into one of the superconducting electrodes of the junction. By choosing an appropriate value for the injection current, which depends upon the spacing between injecting leads among other factors, the residual fluxon pinning can be reduced to a very small level. Fluxon injection according to the present invention provides for fully controlling the trapping of individual fluxons in annular Josephson junctions and is reversible to a state of zero fluxons without heating the Josephson above its critical temperature. Fluxon injection according to the present invention can be used for preparing the working state of fluxon oscillators, clock references, radiation detectors, and shaped junctions that may be used as qubits for quantum computing.
    Type: Application
    Filed: April 4, 2002
    Publication date: November 28, 2002
    Applicant: D-Wave Systems Inc.
    Inventor: Alexey V. Ustinov