Patents by Inventor Ali E. Aliev

Ali E. Aliev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160312387
    Abstract: A device including an array of aligned conductive channels. The conductive channels are operable for directional transport of species selected from the group consisting of electrons, ions, phonons, and combinations thereof. The conductive channels are provided for by nanofibers in a form selected from the group consisting of ribbons, sheets, yarns, and combinations thereof.
    Type: Application
    Filed: July 1, 2016
    Publication date: October 27, 2016
    Applicant: Board of Regents, The University of Texas System
    Inventors: Mei Zhang, Shaoli Fang, Ray H. Baughman, Anvar A. Zakhidov, Kenneth Ross Atkinson, Ali E. Aliev, Sergey Li, Chris Williams
  • Publication number: 20160273133
    Abstract: The present invention is directed to nanofiber yarns, ribbons, and sheets; to methods of making said yarns, ribbons, and sheets; and to applications of said yarns, ribbons, and sheets. In some embodiments, the nanotube yarns, ribbons, and sheets comprise carbon nanotubes. Particularly, such carbon nanotube yarns of the present invention provide unique properties and property combinations such as extreme toughness, resistance to failure at knots, high electrical and thermal conductivities, high absorption of energy that occurs reversibly, up to 13% strain-to-failure compared with the few percent strain-to-failure of other fibers with similar toughness, very high resistance to creep, retention of strength even when heated in air at 450° C. for one hour, and very high radiation and UV resistance, even when irradiated in air. Furthermore these nanotube yarns can be spun as one micron diameter yarns and plied at will to make two-fold, four-fold, and higher fold yarns.
    Type: Application
    Filed: November 25, 2015
    Publication date: September 22, 2016
    Applicant: Board of Regents, The University of Texas System
    Inventors: Mei Zhang, Shaoli Fang, Ray H. Baughman, Anvar A. Zakhidov, Kenneth Ross Atkinson, Ali E. Aliev, Sergey Li, Chris Williams
  • Publication number: 20160251778
    Abstract: The present invention is directed to nanofiber yarns, ribbons, and sheets; to methods of making said yarns, ribbons, and sheets; and to applications of said yarns, ribbons, and sheets. In some embodiments, the nanotube yarns, ribbons, and sheets comprise carbon nanotubes. Particularly, such carbon nanotube yarns of the present invention provide unique properties and property combinations such as extreme toughness, resistance to failure at knots, high electrical and thermal conductivities, high absorption of energy that occurs reversibly, up to 13% strain-to-failure compared with the few percent strain-to-failure of other fibers with similar toughness, very high resistance to creep, retention of strength even when heated in air at 450° C. for one hour, and very high radiation and UV resistance, even when irradiated in air. Furthermore these nanotube yarns can be spun as one micron diameter yarns and plied at will to make two-fold, four-fold, and higher fold yarns.
    Type: Application
    Filed: February 26, 2016
    Publication date: September 1, 2016
    Applicant: Board of Regents, The University of Texas System
    Inventors: Mei Zhang, Shaoli Fang, Ray H. Baughman, Anvar A. Zakhidov, Ali E. Aliev, Sergey Li, Chris Williams
  • Publication number: 20160083872
    Abstract: Fabricating a nanofiber ribbon or sheet with a process that includes providing a primary assembly by arranging carbon nanotube nanofibers in aligned arrays, the arrays having a degree of inter-fiber connectivity, drawing the carbon nanotube nanofibers from the primary assembly into a sheet or ribbon, and depositing the sheet or ribbon on a substrate.
    Type: Application
    Filed: November 25, 2015
    Publication date: March 24, 2016
    Applicant: Board of Regents, The University of Texas System
    Inventors: Mei Zhang, Shaoli Fang, Ray H. Baughman, Anvar A. Zakhidov, Kenneth Ross Atkinson, Ali E. Aliev, Sergey Li, Chris Williams
  • Publication number: 20160037267
    Abstract: A suspended nanotube film (or films) producing sound by means of the thermoacoustic (TA) effect is encapsulated between two plates, at least one of which vibrates, to enhance sound generation efficiency and protect the film. To avoid the oxidation of carbon nanotubes at elevated temperatures and reduce the thermal inertia of surrounding medium the enclosure is filled with inert gas (preferably with high heat capacity ratio, ?=Cp/Cv, and low heat capacity, Cp). To generate sound directly as the first harmonic of applied audio signal without use of an energy consuming dc biasing, an audio signal modulated carrier frequency at much higher frequency is used to provide power input. Various other inventive means are described to provide enhanced projected sound intensity, increased projector efficiency, and lengthened projector life, like the use of infrared reflecting coatings and particles on the projector plates, non-parallel sheet alignment in sheet stacks, and cooling means on one projector side.
    Type: Application
    Filed: March 14, 2014
    Publication date: February 4, 2016
    Applicant: THE BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Ali E. Aliev, Ray H. Baughman
  • Publication number: 20150308018
    Abstract: The present invention is directed to nanofiber yarns, ribbons, and sheets; to methods of making said yarns, ribbons, and sheets; and to applications of said yarns, ribbons, and sheets. In some embodiments, the nanotube yarns, ribbons, and sheets comprise carbon nanotubes. Particularly, such carbon nanotube yarns of the present invention provide unique properties and property combinations such as extreme toughness, resistance to failure at knots, high electrical and thermal conductivities, high absorption of energy that occurs reversibly, up to 13% strain-to-failure compared with the few percent strain-to-failure of other fibers with similar toughness, very high resistance to creep, retention of strength even when heated in air at 450° C. for one hour, and very high radiation and IJV resistance, even when irradiated in air. Furthermore these nanotube yarns can be spun as one micron diameter yarns and plied at will to make two-fold, four-fold, and higher fold yarns.
    Type: Application
    Filed: July 16, 2014
    Publication date: October 29, 2015
    Applicants: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM, Commonwealth Scientific and Industrial Research Organisation
    Inventors: Mei Zhang, Shaoli Fang, Ray H. Baughman, Anvar A. Zakhidov, Kenneth Ross Atkinson, Ali E. Aliev, Sergey Li, Chris Williams
  • Patent number: 9154058
    Abstract: Nanofiber actuators and strain amplifiers having a material that generates a force or generates a displacement when directly or indirectly electrically driven. This material is an aerogel or a related low density or high density network comprising conducting fibers that are electrically interconnected and can substantially actuate without the required presence of either a liquid or solid electrolyte. Reversible or permanently frozen actuation is used to modify the properties of the actuator material for applications.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: October 6, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Ray H. Baughman, Ali E. Aliev, Jiyoung Oh, Mikhail Kozlov, Shaoli Fang, Raquel Ovalle-Robles, Anvar A. Zakhidov
  • Publication number: 20150147573
    Abstract: The present invention is directed to nanofiber yarns, ribbons, and sheets; to methods of making said yarns, ribbons, and sheets; and to applications of said yarns, ribbons, and sheets. In some embodiments, the nanotube yarns, ribbons, and sheets comprise carbon nanotubes. Particularly, such carbon nanotube yarns of the present invention provide unique properties and property combinations such as extreme toughness, resistance to failure at knots, high electrical and thermal conductivities, high absorption of energy that occurs reversibly, up to 13% strain-to-failure compared with the few percent strain-to-failure of other fibers with similar toughness, very high resistance to creep, retention of strength even when heated in air at 450° C. for one hour, and very high radiation and UV resistance, even when irradiated in air. Furthermore these nanotube yarns can be spun as one micron diameter yarns and plied at will to make two-fold, four-fold, and higher fold yarns.
    Type: Application
    Filed: December 23, 2014
    Publication date: May 28, 2015
    Applicant: Board of Regents, The University of Texas System
    Inventors: Mei Zhang, Shaoli Fang, Ray H. Baughman, Anvar A. Zakhidov, Kenneth Ross Atkinson, Ali E. Aliev, Sergey Li, Chris Williams
  • Publication number: 20120000293
    Abstract: Nanofiber actuators and strain amplifiers having a material that generates a force or generates a displacement when directly or indirectly electrically driven. This material is an aerogel or a related low density or high density network comprising conducting fibers that are electrically interconnected and can substantially actuate without the required presence of either a liquid or solid electrolyte. Reversible or permanently frozen actuation is used to modify the properties of the actuator material for applications.
    Type: Application
    Filed: August 17, 2009
    Publication date: January 5, 2012
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Ray H. Baughman, Ali E. Aliev, Jiyoung Oh, Mikhail Kozlov, Shaoli Fang, Raquel Ovalle-Robles, Anvar A. Zakhidov
  • Publication number: 20080170982
    Abstract: The present invention is directed to methods of making nanofiber yarns. In some embodiments, the nanotube yarns comprise carbon nanotubes. Particularly, such carbon nanotube yarns of the present invention provide unique properties and property combinations such as extreme toughness, resistance to failure at knots, high electrical and thermal conductivities, high absorption of energy that occurs reversibly, up to 13% strain-to-failure compared with the few percent strain-to-failure of other fibers with similar toughness, very high resistance to creep, retention of strength even when heated in air at 450° C. for one hour, and very high radiation and UV resistance, even when irradiated in air.
    Type: Application
    Filed: November 9, 2005
    Publication date: July 17, 2008
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Mei Zhang, Shaoli Fang, Ray H. Baughman, Anvar A. Zakhidov, Kenneth Ross Atkinson, Ali E. Aliev, Sergey Li, Chris Williams