Patents by Inventor Alissa M. Fitzgerald

Alissa M. Fitzgerald has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230285561
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Application
    Filed: March 22, 2023
    Publication date: September 14, 2023
    Inventors: Robert H. GRUBBS, Marshall L. STOLLER, Hoyong CHUNG, Alissa M. FITZGERALD, Thomas W. KENNY, Renee M. THOMAS
  • Patent number: 11642410
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: May 9, 2023
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Robert H. Grubbs, Marshall L. Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Patent number: 11645489
    Abstract: An impact indicator includes a micro-sensor having a mass element configured to move from a first position to a second position in response to receipt by the mass element of an impact event. The micro-sensor includes detection circuitry configured to change from a first state to a second state in response to movement of the mass element from the first position to the second position. The detection circuitry is prevented from returning to the first state in response to changing to the second state. A radio-frequency identification (RFID) module is coupled to the detection circuitry and is configured to output a value indicating that the mass element is in the second position. An activator element is configured to maintain the mass element in the first position until removal of the activator element from the micro-sensor.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: May 9, 2023
    Assignee: ShockWatch, Inc.
    Inventors: Anthony N. Fonk, Johannes A. van Niekerk, Alissa M. Fitzgerald, Phillip W. Barth
  • Publication number: 20220088198
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 24, 2022
    Inventors: Robert H. Grubbs, Marshall L. Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Patent number: 11224655
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: January 18, 2022
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Robert H. Grubbs, Marshall Leedy Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Publication number: 20210365756
    Abstract: An impact indicator includes a micro-sensor having a mass element configured to move from a first position to a second position in response to receipt by the mass element of an impact event. The micro-sensor includes detection circuitry configured to change from a first state to a second state in response to movement of the mass element from the first position to the second position. The detection circuitry is prevented from returning to the first state in response to changing to the second state. A radio-frequency identification (RFID) module is coupled to the detection circuitry and is configured to output a value indicating that the mass element is in the second position. An activator element is configured to maintain the mass element in the first position until removal of the activator element from the micro-sensor.
    Type: Application
    Filed: May 21, 2021
    Publication date: November 25, 2021
    Inventors: Anthony N. Fonk, Johannes A. van Niekerk, Alissa M. Fitzgerald, Phillip W. Barth
  • Publication number: 20200360072
    Abstract: Described herein is a microneedle treatment system to reduce fat deposits directly under or in close proximity to skin, and to deliver energy or non-energy treatments to thicken and tighten dermis to treat skin laxity, wrinkles, improve skin scars, and other skin problems. The system can include a disposable patch with a microneedle array, and an overlying mask. The patch can be directly connected to a power source or an overlying mask can be configured to be placed directly over the disposable patch. The overlying mask can include a drive circuitry configured to deliver energy into the microneedle array, a sensor configured for localized sensing, and a telemetry uplink to smart phone, a computer or a computer network. Also described is a method to reduce fat deposits in close proximity to skin, and to deliver energy or non-energy treatments to thicken and tighten dermis using a microneedle array.
    Type: Application
    Filed: August 28, 2018
    Publication date: November 19, 2020
    Inventors: Anna A. KUANG, Alissa M. FITZGERALD
  • Publication number: 20190282695
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Inventors: Robert H. Grubbs, Marshall Leedy Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Patent number: 10357565
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: July 23, 2019
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Robert H. Grubbs, Marshall L. Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Publication number: 20190038749
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Application
    Filed: October 8, 2018
    Publication date: February 7, 2019
    Inventors: Robert H. Grubbs, Marshall L. Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Patent number: 10149906
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: December 11, 2018
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Robert H. Grubbs, Marshall L. Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Publication number: 20160367669
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Application
    Filed: June 30, 2016
    Publication date: December 22, 2016
    Inventors: Robert H. Grubbs, Marshall L. Stoller, Hoyong Chung, Alissa M. Fitzgerald, Thomas W. Kenny, Renee M. Thomas
  • Patent number: 8576073
    Abstract: A gesture-based user interface comprises a wearable portable device storing a gesture profile for each of a plurality of different applications on the wearable portable device to define different gestures for the different applications, wherein each of the gesture profiles includes at least one gesture and a predetermined function associated with the at least one gesture; and a profile web service, wherein the portable device is in communication with the profile web service and is configured to download from the profile web service to the wearable portable device a customizable gesture profile for a particular one of the applications, wherein the customized gesture profile modifies at least one of the different gestures, the customized gesture profile comprising personal preferences of the user regarding the modified gesture, including physical attributes of the user.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: November 5, 2013
    Assignee: Wimm Labs, Inc.
    Inventors: David J. Mooring, Alissa M. Fitzgerald
  • Publication number: 20130123781
    Abstract: This invention related to manufactured microbubbles, as well as methods of using manufactured microbubbles, for example, in medicinal applications. The invention pertains to the physical structure and materials of the microbubbles, as well as to methods for manufacturing microbubbles, methods for targeting microbubbles for specific medicinal applications, and methods for delivering microbubbles in medical treatment.
    Type: Application
    Filed: August 24, 2012
    Publication date: May 16, 2013
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: ROBERT H. GRUBBS, MARSHALL L. STOLLER, HOYONG CHUNG, ALISSA M. FITZGERALD, THOMAS W. KENNY, RENEE M. THOMAS
  • Publication number: 20130002538
    Abstract: A gesture-based user interface comprises a wearable portable device storing a gesture profile for each of a plurality of different applications on the wearable portable device to define different gestures for the different applications, wherein each of the gesture profiles includes at least one gesture and a predetermined function associated with the at least one gesture; and a profile web service, wherein the portable device is in communication with the profile web service and is configured to download from the profile web service to the wearable portable device a customizable gesture profile for a particular one of the applications, wherein the customized gesture profile modifies at least one of the different gestures, the customized gesture profile comprising personal preferences of the user regarding the modified gesture, including physical attributes of the user.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 3, 2013
    Inventors: David J. Mooring, Alissa M. Fitzgerald
  • Patent number: 8344998
    Abstract: Methods and systems for providing gesture-based power management for a wearable portable electronic device with display are described. An inertial sensor is calibrated to a reference orientation relative to gravity. Motion of the portable device is tracked with respect to the reference orientation, and the display is enabled when the device is within a viewable range, wherein the viewable range is a predefined rotational angle range in each of x, y, and z axis, to a user based upon a position of the device with respect to the reference orientation. Furthermore, the display is turned off if an object is detected within a predetermined distance of the display for a predetermined amount of time.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: January 1, 2013
    Assignee: WIMM Labs, Inc.
    Inventors: Alissa M. Fitzgerald, Ely K. Tsern, David J. Mooring, James A. Gasbarro
  • Patent number: 8289162
    Abstract: Methods and systems for providing a gesture-based user interface for a wearable portable device are described. A gesture including a movement of the wearable portable device is received, and at least one character associated with the gesture is identified and displayed on the wearable portable device, thereby allowing entry of characters on the user interface of the wearable portable device using the gestures.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: October 16, 2012
    Assignee: Wimm Labs, Inc.
    Inventors: David J. Mooring, Alissa M. Fitzgerald
  • Patent number: 7979237
    Abstract: A method for predicting failures in crystalline microstructures is described. Fracture stress distribution data obtained from test samples prepared according to the same manufacturing process as a contemplated device is used to characterize the strength of surfaces in a numerical stress analysis of the device. The reliability is then calculated for surface nodes on the device. The product of all such reliabilities yields the overall reliability (or 1—the overall failure probability) of the device.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: July 12, 2011
    Assignee: A. M. Fitzgerald & Associates, LLC
    Inventors: Alissa M. Fitzgerald, David M. Pierce
  • Patent number: 7852711
    Abstract: Devices and methods for determining a current location using a location detection element, determining a local time zone based on the current location using a memory unit, keeping time using a micro-electro-mechanical-system (MEMS) oscillator unit co-fabricated on a common substrate with the location detection element, and determining a local time based on the local time zone using a controller element. Optional embodiments comprise a MEMS oscillator unit that is fabricated underneath, next to, or on top of the location detection element. Additional embodiments comprise a GPS chip optionally assisted by a cell phone chipset or FM receiver to enhance location and time determination. Optional embodiments may additionally enter a power conservation mode after the current location has been determined, or may detect air travel to disable the location detection element and enable the location detection element upon detected landing.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: December 14, 2010
    Assignee: Pillar, LLC
    Inventors: Alissa M. Fitzgerald, Dave Mooring
  • Publication number: 20100156676
    Abstract: Methods and systems for providing a gesture-based user interface for a wearable portable device are described. A gesture including a movement of the wearable portable device is received, and at least one character associated with the gesture is identified and displayed on the wearable portable device, thereby allowing entry of characters on the user interface of the wearable portable device using the gestures.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Applicant: Pillar Ventures, LLC
    Inventors: David J. Mooring, Alissa M. Fitzgerald