Patents by Inventor Allan H. Clauer

Allan H. Clauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110126605
    Abstract: A bend bar is available for use in a quality control test for testing for a consistency of residual stress effects in a particular material using a given a laser peening process. The bar is composed of the particular material to be tested and has a bar length and a bar thickness. The particular material has a characteristic maximum stress penetration depth for compressive residual stresses that can be formed in using the given laser peening process. The bar thickness is chosen so as to be at least twice the characteristic maximum stress penetration depth. The bar has a test surface that extends parallel to the bar length and perpendicular to the bar thickness. After forming a spot pattern on the test surface using the given laser peening process, the deflection generated in the bar due to the compressive residual stresses induced by laser peening can then be measured and used as a quality control measurement.
    Type: Application
    Filed: February 8, 2011
    Publication date: June 2, 2011
    Applicant: LSP Technologies, Inc.
    Inventors: Richard D. Tenaglia, Allan H. Clauer, Jeff L. Dulaney, David F. Lahrman, Steve Toller
  • Patent number: 7906745
    Abstract: A bend bar is available for use in a quality control test for testing for a consistency of residual stress effects in a particular material using a given a laser peening process. The bar is composed of the particular material to be tested and has a bar length and a bar thickness. The particular material has a characteristic maximum stress penetration depth for compressive residual stresses that can be formed in using the given laser peening process. The bar thickness is chosen so as to be at least twice the characteristic maximum stress penetration depth. The bar has a test surface that extends parallel to the bar length and perpendicular to the bar thickness. After forming a spot pattern on the test surface using the given laser peening process, the deflection generated in the bar due to the compressive residual stresses induced by laser peening can then be measured and used as a quality control measurement.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: March 15, 2011
    Assignee: LSP Technologies, Inc.
    Inventors: Richard D. Tenaglia, Allan H. Clauer, Jeff L. Dulaney, David F. Lahrman, Steve Toller
  • Patent number: 7776165
    Abstract: A method of manufacturing a workpiece involves performing any one of various post-processing part modification steps on a workpiece that has been previously subjected to laser shock processing. In one step, material is removed from the compressive residual stress region of the processed workpiece. Alternately, the workpiece may be provided with oversized dimensions such that the removal process removes an amount of material sufficient to generate a processed workpiece having dimensions substantially conforming to design specifications. Alternately, the material removal process is adapted to establish a penetration depth for material removal that coincides with the depth at which the workpiece exhibits maximum compressive residual stress. Alternately, a first high-intensity laser shock processing treatment is performed on the workpiece, followed by the removal of material from the compressive residual stress region, and then a second low-intensity laser shock processing treatment is performed on the workpiece.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: August 17, 2010
    Assignee: LSP Technologies, Inc.
    Inventors: Jeff L. Dulaney, Steven M. Toller, Allan H. Clauer
  • Patent number: 7470335
    Abstract: A method of manufacturing a workpiece involves performing any one of various post-processing part modification steps on a workpiece that has been previously subjected to laser shock processing. In one step, material is removed from the compressive residual stress region of the processed workpiece. Alternately, the workpiece may be provided with oversized dimensions such that the removal process removes an amount of material sufficient to generate a processed workpiece having dimensions substantially conforming to design specifications. Alternately, the material removal process is adapted to establish a penetration depth for material removal that coincides with the depth at which the workpiece exhibits maximum compressive residual stress. Alternately, a first high-intensity laser shock processing treatment is performed on the workpiece, followed by the removal of material from the compressive residual stress region, and then a second low-intensity laser shock processing treatment is performed on the workpiece.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: December 30, 2008
    Assignee: LSP Technologies, Inc.
    Inventors: Steven M. Toller, Allan H. Clauer, Jeff L. Dulaney
  • Patent number: 7321105
    Abstract: A laser peening apparatus is available for laser peening a hidden surface of a workpiece, the hidden surface not being line-of-sight accessible to laser energy for treatment thereof. The apparatus includes a pulsed laser system and a laser directing unit. The pulsed laser system is configured for generating the laser energy used for laser peening. The laser directing unit operatively receives and channels the laser energy generated by the pulsed laser system. The laser directing unit includes a laser transmission end and is capable of variably and selectively positioning that laser transmission end. The laser directing unit is thereby configured for variably and selectively directing laser energy upon the hidden surface via the laser transmission end.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: January 22, 2008
    Assignee: LSP Technologies, Inc.
    Inventors: Allan H. Clauer, Jeff L. Dulaney, David F. Lahrmann, David Sokol
  • Patent number: 6875953
    Abstract: Various laser shock processing methods are provided to establish selective compressive residual stress distribution profiles within a workpiece. An asymmetrical stress distribution profile may be formed through the thickness of a thin section of a gas turbine engine airfoil. One method involves simultaneously irradiating a workpiece with a set of laser beams to form a corresponding set of adjacent non-overlapping laser shock peened surfaces, enabling the shockwaves to encounter one another. Additionally, opposite sides of the workpiece may be irradiated at different times to form opposing laser shock peened surfaces, enabling the shockwaves to meet at a location apart from the mid-plane. Furthermore, opposite sides of the workpiece may be irradiated simultaneously using laser beams having different pulse lengths to form opposing laser shock peened surfaces. Moreover, opposite sides of the workpiece may be irradiated simultaneously to form a set of laterally offset laser shock peened surfaces.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: April 5, 2005
    Assignee: LSP Technologies, Inc.
    Inventors: Allan H. Clauer, David F. Lahrman, Jeff L. Dulaney, Steven M. Toller
  • Patent number: 6867390
    Abstract: The present invention enables the processing head to locate itself precisely on the surface of the structure being processed, and to then reposition itself correctly for the next laser spot. Further, the present invention will complete processing a laser peened area, the area including a multiplicity of spots arranged in a specific pattern, and correctly laser peen each spot in the area under control of a controller including control linkages with the laser. The invention further provides an automated laser peening processing head encompassing spatial position sensing and locating means, as well as programmed spatial positioning, application of overlay materials, verification of proper overlay condition and positioning, and notification of the laser to pulse the surface of the structure.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: March 15, 2005
    Assignee: LSP Technologies, Inc
    Inventors: Allan H. Clauer, Jeff L. Dulaney, David F. Lahrman
  • Patent number: 6852179
    Abstract: A method of manufacturing a workpiece involves performing any one of various post-processing part modification steps on a workpiece that has been previously subjected to laser shock processing. In one step, material is removed from the compressive residual stress region of the processed workpiece. Alternately, the workpiece may be provided with oversized dimensions such that the removal process removes an amount of material sufficient to generate a processed workpiece having dimensions substantially conforming to design specifications. Alternately, the material removal process is adapted to establish a penetration depth for material removal that coincides with the depth at which the workpiece exhibits maximum compressive residual stress. Alternately, a first high-intensity laser shock processing treatment is performed on the workpiece, followed by the removal of material from the compressive residual stress region, and then a second low-intensity laser shock processing treatment is performed on the workpiece.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: February 8, 2005
    Assignee: LSP Technologies Inc.
    Inventors: Steven M. Toller, Allan H. Clauer, Jeff L. Dulaney
  • Patent number: 6841755
    Abstract: A method of controlling the application of laser peening overlays on the surface of a workpiece to reduce the variability of shock waves generated therein, comprises applying an energy-absorbing overlay to a portion of the surface of a workpiece, measuring the thickness of the energy-absorbing overlay in at least one location on the energy-absorbing overlay, applying a transparent overlay material over the energy-absorbing overlay, measuring the thickness of the transparent overlay in at least one location on the transparent overlay, determining if the measured values for each overlay is within a specified range, and directing a pulse of coherent energy to the workpiece to create a shock wave therein when the measured values are within the specified range.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: January 11, 2005
    Assignee: LSP Technologies Inc.
    Inventors: Steven E. Dykes, Allan H. Clauer, Jeff L. Dulaney, David F. Lahrman, Mark O'Loughlin
  • Publication number: 20040238509
    Abstract: Various laser shock processing methods are provided to establish selective compressive residual stress distribution profiles within a workpiece. An asymmetrical stress distribution profile may be formed through the thickness of a thin section of a gas turbine engine airfoil. One method involves simultaneously irradiating a workpiece with a set of laser beams to form a corresponding set of adjacent non-overlapping laser shock peened surfaces, enabling the shockwaves to encounter one another. Additionally, opposite sides of the workpiece may be irradiated at different times to form opposing laser shock peened surfaces, enabling the shockwaves to meet at a location apart from the mid-plane. Furthermore, opposite sides of the workpiece may be irradiated simultaneously using laser beams having different pulse lengths to form opposing laser shock peened surfaces. Moreover, opposite sides of the workpiece may be irradiated simultaneously to form a set of laterally offset laser shock peened surfaces.
    Type: Application
    Filed: September 12, 2003
    Publication date: December 2, 2004
    Inventors: Allan H. Clauer, David F. Lahrman, Jeff L. Dulaney, Steven M. Toller
  • Publication number: 20040232125
    Abstract: A laser peening apparatus is available for laser peening a hidden surface of a workpiece, the hidden surface not being line-of-sight accessible to laser energy for treatment thereof. The apparatus includes a pulsed laser system and a laser directing unit. The pulsed laser system is configured for generating the laser energy used for laser peening. The laser directing unit operatively receives and channels the laser energy generated by the pulsed laser system. The laser directing unit includes a laser transmission end and is capable of variably and selectively positioning that laser transmission end. The laser directing unit is thereby configured for variably and selectively directing laser energy upon the hidden surface via the laser transmission end.
    Type: Application
    Filed: February 20, 2004
    Publication date: November 25, 2004
    Inventors: Allan H. Clauer, Jeff L. Dulaney, David F. Lahrmann, David Sokol
  • Publication number: 20040226637
    Abstract: A laser shock processing treatment is employed to condition the mating surfaces of various fastener elements, such as screws, bolts, splines, keys, and keyways. In a screw, for example, the threaded surface is laser shock processed to form laser shock processed surfaces at the thread root portion of the screw. Regions of compressive residual stresses imparted by laser shock processing are thereby formed and extend into the screw body from the laser shock processed surfaces. In a keyway, for example, the keyway surface is laser shock processed to form laser shock processed surfaces within the keyway. Regions of compressive residual stresses imparted by laser shock processing are thereby formed and extend into the keyway body from the laser shock processed surfaces. The compressive residual stress regions enhance the rigidity and torsional stiffness of the fastener elements and improve their fatigue properties.
    Type: Application
    Filed: May 13, 2003
    Publication date: November 18, 2004
    Applicant: LSP Technologies, Inc.
    Inventors: Jeff L. Dulaney, Allan H. Clauer, Steven M. Toller
  • Publication number: 20040224179
    Abstract: A laser shock processing treatment enables a selectively adjustable and customized compressive residual stress distribution profile to be developed within a workpiece by tailoring the size and shape of the laser beam spots. One peening operation applies to the workpiece a first pattern having relatively large laser beam spots and then applies a second pattern having relatively small laser beam spots. The composite use of such small and large beam spots enables the stress distribution profile to be tailored to the part specifications. The large beam spots maximize the depth of compressive residual stress in the part, while the small beam spots optimize the surface compressive residual stresses of the part. The use of small spot beam patterns allows untreated or improperly processed areas to be laser peened.
    Type: Application
    Filed: May 9, 2003
    Publication date: November 11, 2004
    Applicant: LSP Technologies, Inc.
    Inventors: David W. Sokol, Allan H. Clauer
  • Patent number: 6759626
    Abstract: Various laser shock processing systems are provided to establish selective compressive residual stress distribution profiles within a workpiece. An asymmetrical stress profile may be formed through the thickness of a thin section of a gas turbine engine airfoil. One system is configured to simultaneously irradiate a workpiece with a set of laser beams to form a corresponding set of adjacent non-overlapping laser shock peened surfaces, enabling the shockwaves to encounter one another. Another system irradiates opposite sides of the workpiece at different times to form opposing laser shock peened surfaces, enabling the shockwaves to meet at a location apart from the mid-plane. Another system simultaneously irradiates opposite sides of the workpiece using laser beams having different pulse lengths to form opposing laser shock peened surfaces. Another system simultaneously irradiates opposite sides of the workpiece to form a set of laterally offset laser shock peened surfaces.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: July 6, 2004
    Assignee: L&P Technologies, Inc.
    Inventors: Allan H. Clauer, David F. Lahrman, Jeff L. Dulaney, Steve M. Toller
  • Patent number: 6752593
    Abstract: Articles produced by laser shock processing exhibit various compressive residual stress distribution profiles. A gas turbine engine airfoil includes an asymmetrical stress profile formed through the thickness of its thin section. The articles include plural laser shock peened surfaces and plural regions having deep compressive residual stresses imparted by laser shock peening extending into the article from the laser peened surfaces. One article includes at least one set of simultaneously formed, adjacent non-overlapping laser shock peened surfaces. Another article includes at least one set of opposing laser shock peened surfaces formed at different times at opposite sides of the article. Another article includes at least one set of opposing laser shock peened surfaces formed simultaneously at opposite sides of the article using laser beams having different pulse lengths.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: June 22, 2004
    Assignee: LSP Technologies, Inc.
    Inventors: Allan H. Clauer, David F. Lahrman, Jeff L. Dulaney, Steve M. Toller
  • Patent number: 6747240
    Abstract: A method and apparatus for increasing the effectiveness and efficiency of laser shock processing of a solid material. The method includes applying an energy absorbing coating to a portion of the surface of a solid material, applying an ultraviolet curable resin to the coated portion of the surface of the solid material, applying an ultraviolet light to the curable resin to form a pellicle over the energy absorbing coating on the surface of the solid material, and applying a transparent overlay to the pellicular portion of the solid material. A pulse of coherent laser energy is directed to the coated portion of the solid material to create a shockwave. After the pulse of coherent energy is directed to the solid material, a high-speed jet of fluid may be directed to the coated portion of the solid material to remove the remaining coating from the solid material.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: June 8, 2004
    Assignee: LSP Technologies, Inc.
    Inventors: Richard D. Tenaglia, Jeff L. Dulaney, Allan H. Clauer
  • Patent number: 6683976
    Abstract: An image processing system for monitoring a laser peening process includes a laser peening system having a workpiece positioner and a system controller. A video camera is utilized for forming an electronic image of at least a portion of a workpiece. An image processing computer is connected to the video camera, and the laser peening controller includes a program to determine a position of the workpiece.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: January 27, 2004
    Assignee: LSP Technologies, Inc.
    Inventors: Jeffrey L. Dulaney, Mark E. O'Loughlin, Allan H. Clauer
  • Publication number: 20040011774
    Abstract: A method and apparatus for increasing the effectiveness and efficiency of laser shock processing of a solid material. The method includes applying an energy absorbing coating to a portion of the surface of a solid material, applying an ultraviolet curable resin to the coated portion of the surface of the solid material, applying an ultraviolet light to the curable resin to form a pellicle over the energy absorbing coating on the surface of the solid material, and applying a transparent overlay to the pellicular portion of the solid material. A pulse of coherent laser energy is directed to the coated portion of the solid material to create a shockwave. After the pulse of coherent energy is directed to the solid material, a high-speed jet of fluid may be directed to the coated portion of the solid material to remove the remaining coating from the solid material.
    Type: Application
    Filed: February 21, 2003
    Publication date: January 22, 2004
    Applicant: LSP TECHNOLOGIES, INC.
    Inventors: Richard D. Tenaglia, Jeff L. Dulaney, Allan H. Clauer
  • Patent number: 6664506
    Abstract: Various laser shock processing methods are provided to establish selective compressive residual stress distribution profiles within a workpiece. An asymmetrical stress distribution profile may be formed through the thickness of a thin section of a gas turbine engine airfoil. One method involves simultaneously irradiating a workpiece with a set of laser beams to form a corresponding set of adjacent non-overlapping laser shock peened surfaces, enabling the shockwaves to encounter one another. Additionally, opposite sides of the workpiece may be irradiated at different times to form opposing laser shock peened surfaces, enabling the shockwaves to meet at a location apart from the midplane. Furthermore, opposite sides of the workpiece may be irradiated simultaneously using laser beams having different pulse lengths to form opposing laser shock peened surfaces. Moreover, opposite sides of the workpiece may be irradiated simultaneously to form a set of laterally offset laser shock peened surfaces.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: December 16, 2003
    Assignee: LSP Technologies, Inc.
    Inventors: Allan H. Clauer, David F. Lahrman, Jeff L. Dulaney, Steve M. Toller
  • Publication number: 20030217997
    Abstract: The present invention enables the processing head to locate itself precisely on the surface of the structure being processed, and to then reposition itself correctly for the next laser spot. Further, the present invention will complete processing a laser peened area, the area including a multiplicity of spots arranged in a specific pattern, and correctly laser peen each spot in the area under control of a controller including control linkages with the laser.
    Type: Application
    Filed: February 21, 2003
    Publication date: November 27, 2003
    Applicant: LSP Technologies, Inc.
    Inventors: Allan H. Clauer, Jeff L. Dulaney, David F. Lahrman