Patents by Inventor Allan McGuire

Allan McGuire has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220270485
    Abstract: A vehicle proximity monitoring system includes an operator area portion comprising a computer processor programmed for receiving and processing both wireless-based data communications and wire-based data communications. A proximity detection portion of the monitoring system may include a condition monitoring device and associated components for wirelessly transmitting data collected by the condition monitoring device to the operator area portion. The proximity detection portion may be configured for communication with a controller area network (CAN) bus operatively associated with the vehicle, and a power line of the vehicle for pairing at least one component of the proximity detection portion with at least one component of the operator area portion.
    Type: Application
    Filed: March 8, 2022
    Publication date: August 25, 2022
    Applicant: SAFE FLEET ACQUISITION CORP.
    Inventors: Eric Combs, Justin Garver, Stephen Hunter, L. Allan McGuire, Richard Tier
  • Patent number: 10076976
    Abstract: A seat pedestal includes an open base upon which a plate assembly is mounted for translational movement upon the base. The plate assembly includes a bottom plate, a seat mount for supporting a seat, and a bearing means between the bottom plate and the seat mount to permit the seat mount to rotate. One lock releasably secures the plate assembly in the driving position and another, which is self-actuating, releases the seat mount so that it can rotate freely when it is in the resting position. A stop carried by the seat mount defines a range in which the seat may be rotated. At least one pair of interlocking members couples the seat mount with the bottom plate to transfer lateral loads born by the seat to the base. The bottom plate, the bearing means, and the seat mount have concentric openings through which wires may pass for accessories such as power/heated seats, headrests, and computer screens and related accoutrements.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: September 18, 2018
    Assignee: LIPPERT COMPONENTS MANUFACTURING, INC.
    Inventors: Timothy Roeglin, Hari Sunkara, Allan McGuire
  • Patent number: 10072945
    Abstract: A jack leveling apparatus utilizes a Hall effect sensor to determine a rate of movement of the jack leveling apparatus. The rate of movement is correlated to loading or unloading of the jack level device. When a load is applied to the jack level, the rate of movement will slow while alternatively, if a load is removed, the rate of movement will increase. Utilizing these values, the controller may also determine the position of the leg of the jack level device.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: September 11, 2018
    Assignee: LIPPERT COMPONENTS MANUFACTURING, INC.
    Inventor: Larry Allan McGuire
  • Publication number: 20170320406
    Abstract: A seat pedestal includes an open base upon which a plate assembly is mounted for translational movement upon the base. The plate assembly includes a bottom plate, a seat mount for supporting a seat, and a bearing means between the bottom plate and the seat mount to permit the seat mount to rotate. One lock releasably secures the plate assembly in the driving position and another, which is self-actuating, releases the seat mount so that it can rotate freely when it is in the resting position. A stop carried by the seat mount defines a range in which the seat may be rotated. At least one pair of interlocking members couples the seat mount with the bottom plate to transfer lateral loads born by the seat to the base. The bottom plate, the bearing means, and the seat mount have concentric openings through which wires may pass for accessories such as power/heated seats, headrests, and computer screens and related accoutrements.
    Type: Application
    Filed: April 17, 2017
    Publication date: November 9, 2017
    Inventors: Timothy Roeglin, Hari Sunkara, Allan McGuire
  • Patent number: 9254729
    Abstract: The part load method controls delivery of diluent fluid, fuel fluid, and oxidant fluid in thermodynamic cycles using diluent, to increase the Turbine Inlet Temperature (TIT) and thermal efficiency in part load operation above that obtained by relevant art part load operation of Brayton cycles, fogged Brayton cycles, or cycles operating with some steam delivery, or with maximum steam delivery. The part load method may control the TIT at the design level by controlling one or both of liquid and/or gaseous fluid water over a range from full load to less than 45% load. This extends operation to lower operating loads while providing higher efficiencies and lower operating costs using water, steam and/or CO2 as diluents, than in simple cycle operation.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: February 9, 2016
    Assignee: Vast Power Portfolio, LLC
    Inventors: L. Allan McGuire, Ian Wylie, David L. Hagen
  • Patent number: 8631657
    Abstract: Thermodynamic cycles with diluent that produce mechanical power, electrical power, and/or fluid streams for heating and/or cooling are described. Systems contain a combustion system producing an energetic fluid by combusting fuel with oxidant. Thermal diluent is preferably used in the cycle to improve performance, including one or more of power, efficiency, economics, emissions, dynamic and off-peak load performance, temperature regulation, and/or cooling heated components. Cycles include a heat recovery system and preferably recover and recycle thermal diluent from expanded energetic fluid to improve cycle thermodynamic efficiency and reduce energy conversion costs. Cycles preferably include controls for temperatures, pressures, and flow rates within a combined heat and power (CHP) system, and controls for power, thermal output, efficiency, and/or emissions.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: January 21, 2014
    Assignee: Vast Power Portfolio, LLC
    Inventors: David L. Hagen, Gary Ginter, Alberto Traverso, Bill Goheen, Allan McGuire, Janet Rankin, Aristide Massardo, Ronald L. Klaus
  • Patent number: 8561702
    Abstract: Combustion gases with relatively high levels of carbon dioxide (CO2), steam, and/or hot water, may be used to improve recovery of heavy hydrocarbons from geologic formations and/or from surface mined materials. These gases reduce the viscosity and/or increase hydrocarbon extraction rates through improvements in thermal efficiency and/or higher rates of heat delivery for a given combustor an capital investment. Such high water/CO2 content combustion gases can be formed by adding water to combustion gases formed by burning fuel. The pressure to inject the combustion gases and extract heavy hydrocarbons may be provided by diverting high pressure expanded gases from wet combustion in a gas turbine, or by reducing the pressure drop across a turbine and using the expanded hot gases for extraction.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: October 22, 2013
    Assignee: Vast Power Portfolio, LLC
    Inventors: Ian Wylie, L. Allan McGuire, David L. Hagen, Gary D. Ginter
  • Patent number: 8192688
    Abstract: A thermally diluted exothermic reactor system is comprised of numerous orifices distributed within a combustor by distributed perforated contactor tubes or ducts. The perforated contactors deliver and mix diluent fluid and one or more reactant fluids with an oxidant fluid. Numerous micro-jets about the perforated tubes deliver, mix and control the composition of reactant fluid, oxidant fluid and diluent fluid. The reactor controls one or more of composition profiles, composition ratio profiles and temperature profiles in one or more of the axial direction and one or two transverse directions, reduces temperature gradients and improves power, efficiency and emissions.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: June 5, 2012
    Assignee: Vast Power Portfolio LLC
    Inventors: David L. Hagen, Gary Ginter, Bill Goheen, L. Allan McGuire, Janet Rankin
  • Patent number: 8136740
    Abstract: A thermodynamic system that produces mechanical, electrical power, and/or fluid streams for heating or cooling. The cycle contains a combustion system that produces an energetic fluid by combustion of a fuel with an oxidant. A thermal diluent may be used in the cycle to improve performance, including but not limited to power, efficiency, economics, emissions, dynamic and off-peak load performance, and/or turbine inlet temperature (TIT) regulation and cooling heated components. The cycle preferably includes a heat recovery system and a condenser or other means to recover and recycle heat and the thermal diluent from the energetic fluid to improve the cycle thermodynamic efficiency and reduce energy conversion costs. The cycle may also include controls for temperatures, pressures, and flow rates throughout the cycle, and controls power output, efficiency, and energetic fluid composition.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: March 20, 2012
    Assignee: Vast Power Portfolio, LLC
    Inventors: David L. Hagen, Gary Ginter, Alberto Traverso, Bill Goheen, Allan McGuire, Janet Rankin, Aristide Massardo, Ronald L. Klaus
  • Publication number: 20100276148
    Abstract: Combustion gases with relatively high levels of carbon dioxide (CO2), steam, and/or hot water, may be used to improve recovery of heavy hydrocarbons from geologic formations and/or from surface mined materials. These gases reduce the viscosity and/or increase hydrocarbon extraction rates through improvements in thermal efficiency and/or higher rates of heat delivery for a given combustor an capital investment. Such high water/CO2 content combustion gases can be formed by adding water to combustion gases formed by burning fuel. The pressure to inject the combustion gases and extract heavy hydrocarbons may be provided by diverting high pressure expanded gases from wet combustion in a gas turbine, or by reducing the pressure drop across a turbine and using the expanded hot gases for extraction.
    Type: Application
    Filed: February 11, 2008
    Publication date: November 4, 2010
    Applicant: VAST POWER PORTFOLIO, LLC
    Inventors: Ian Wylie, L. Allan McGuire, David L. Hagen, Gary D. Ginter
  • Patent number: 7814975
    Abstract: Diluted wet combustion forms a hot process fluid or VASTgas including carbon dioxide (CO2) and fluid water which is delivered to geologic formations and/or to surface mined materials to reduce the viscosity and/or increase hydrocarbon extraction. High water and/or CO2 content is achieved by reducing non-aqueous diluent and/or adding or recycling CO2. Power recovered from expanding the VASTgas may be used to pressurize the VASTgas for delivery by partial expansion through a Direct VAST cycle, and/or by diverting compressed oxidant through a parallel thermogenerator in a Diverted VAST cycle. Pressurized VASTgas may be injected into a well within the hydrocarbon formation or with mined material into a heavy hydrocarbon separator vessel to heat, mobilize, solubilize and/or extract heavy hydrocarbons. Light hydrocarbons may be mixed in with the hot process fluid to enhance hydrocarbon mobilization and recovery. Microwaves may further heat the VASTgas and/or hydrocarbon.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: October 19, 2010
    Assignee: Vast Power Portfolio, LLC
    Inventors: David L. Hagen, Ian Wylie, L. Allan McGuire, Gary Ginter
  • Publication number: 20090180939
    Abstract: A thermally diluted exothermic reactor system is comprised of numerous orifices distributed within a combustor by distributed perforated contactor tubes or ducts. The perforated contactors deliver and mix diluent fluid and one or more reactant fluids with an oxidant fluid. Numerous micro-jets about the perforated tubes deliver, mix and control the composition of reactant fluid, oxidant fluid and diluent fluid. The reactor controls one or more of composition profiles, composition ratio profiles and temperature profiles in one or more of the axial direction and one or two transverse directions, reduces temperature gradients and improves power, efficiency and emissions.
    Type: Application
    Filed: March 26, 2009
    Publication date: July 16, 2009
    Inventors: David L. Hagen, Gary Ginter, Bill Goheen, Allan McGuire, Janet Rankin
  • Patent number: 7523603
    Abstract: A thermally diluted exothermic reactor system is comprised of numerous orifices distributed within a combustor by distributed perforated contactor tubes or ducts. The perforated contactors deliver and mix diluent fluid and one or more reactant fluids with an oxidant fluid. Numerous micro-jets about the perforated tubes deliver, mix and control the composition of reactant fluid, oxidant fluid and diluent fluid. The reactor controls one or more of composition profiles, composition ratio profiles and temperature profiles in one or more of the axial direction and one or two transverse directions, reduces temperature gradients and improves power, efficiency and emissions.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: April 28, 2009
    Assignee: Vast Power Portfolio, LLC
    Inventors: David L. Hagen, Gary Ginter, Bill Goheen, Allan McGuire, Janet Rankin
  • Publication number: 20090071166
    Abstract: A thermodynamic system that produces mechanical, electrical power, and/or fluid streams for heating or cooling. The cycle contains a combustion system that produces an energetic fluid by combustion of a fuel with an oxidant. A thermal diluent may be used in the cycle to improve performance, including but not limited to power, efficiency, economics, emissions, dynamic and off-peak load performance, and/or turbine inlet temperature (TIT) regulation and cooling heated components. The cycle preferably includes a heat recovery system and a condenser or other means to recover and recycle heat and the thermal diluent from the energetic fluid to improve the cycle thermodynamic efficiency and reduce energy conversion costs. The cycle may also include controls for temperatures, pressures, and flow rates throughout the cycle, and controls power output, efficiency, and energetic fluid composition.
    Type: Application
    Filed: August 25, 2008
    Publication date: March 19, 2009
    Inventors: David L. Hagen, Gary Ginter, Alberto Traverso, Bill Goheen, Allan McGuire, Janet Rankin, Aristride Massardo, Ronald L. Klaus
  • Publication number: 20090071648
    Abstract: Diluted wet combustion forms a hot process fluid or VASTgas comprising carbon dioxide (CO2) and fluid water which is delivered geologic formations and/or from surface mined materials to reduce the viscosity and/or increase hydrocarbon extraction. This may improve thermal efficiency and/or increases heat delivery for a given combustor or per capital investment. High water and/or CO2 content is achieved by reducing non-aqueous diluent and/or adding or recycling CO2. Power recovered from expanding the VASTgas may be pressurize the VASTgas for delivery by partial expansion through a Direct VAST cycle, and/or by diverting compressed oxidant through a parallel thermogenerator in a Diverted VAST cycle. Pressurized VASTgas may be injected into well within the hydrocarbon formation or with mined material into a heavy hydrocarbon separator vessel to heat, mobilize, solubilize and/or extract heavy hydrocarbons.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 19, 2009
    Inventors: David L. Hagen, Ian Wylie, L. Allan McGuire, Gary Ginter
  • Publication number: 20090064653
    Abstract: The part load method controls delivery of diluent fluid, fuel fluid, and oxidant fluid in thermodynamic cycles using diluent, to increase the Turbine Inlet Temperature (TIT) and thermal efficiency in part load operation above that obtained by relevant art part load operation of Brayton cycles, fogged Brayton cycles, or cycles operating with some steam delivery, or with maximum steam delivery. The part load method may control the TIT at the design level by controlling one or both of liquid and/or gaseous fluid water over a range from full load to less than 45% load. This extends operation to lower operating loads while providing higher efficiencies and lower operating costs using water, steam and/or CO2 as diluents, than in simple cycle operation.
    Type: Application
    Filed: September 2, 2008
    Publication date: March 12, 2009
    Inventors: David L. Hagen, Ian Wylie, L. Allan McGuire
  • Patent number: 7416137
    Abstract: A thermodynamic system that produces mechanical, electrical power, and/or fluid streams for heating or cooling. The cycle contains a combustion system that produces an energetic fluid by combustion of a fuel with an oxidant. A thermal diluent may be used in the cycle to improve performance, including but not limited to power, efficiency, economics, emissions, dynamic and off-peak load performance, and/or turbine inlet temperature (TIT) regulation and cooling heated components. The cycle preferably includes a heat recovery system and a condenser or other means to recover and recycle heat and the thermal diluent from the energetic fluid to improve the cycle thermodynamic efficiency and reduce energy conversion costs. The cycle may also include controls for temperatures, pressures, and flow rates throughout the cycle, and controls power output, efficiency, and energetic fluid composition.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: August 26, 2008
    Assignee: Vast Power Systems, Inc.
    Inventors: David L. Hagen, Gary Ginter, Alberto Traverso, Bill Goheen, Allan McGuire, Janet Rankin, Aristide Massardo, Ronald L. Klaus
  • Publication number: 20070234702
    Abstract: Thermodynamic cycles with diluent that produce mechanical power, electrical power, and/or fluid streams for heating and/or cooling are described. Systems contain a combustion system producing an energetic fluid by combusting fuel with oxidant. Thermal diluent is preferably used in the cycle to improve performance, including one or more of power, efficiency, economics, emissions, dynamic and off-peak load performance, temperature regulation, and/or cooling heated components. Cycles include a heat recovery system and preferably recover and recycle thermal diluent from expanded energetic fluid to improve cycle thermodynamic efficiency and reduce energy conversion costs. Cycles preferably include controls for temperatures, pressures, and flow rates within a combined heat and power (CHP) system, and controls for power, thermal output, efficiency, and/or emissions.
    Type: Application
    Filed: October 10, 2006
    Publication date: October 11, 2007
    Inventors: David Hagen, Gary Ginter, Alberto Traverso, Bill Goheen, Allan McGuire, Janet Rankin, Aristide Massardo, Ronald Klaus
  • Publication number: 20050056313
    Abstract: The invention relates in general to methods of controlled mixing one fluid with another. In particular it relates to a distributed direct fluid contactor including arrays of streamlined perforated tubes distributed across a flow to efficiently contact and mix one or more fluids flowing through one or more tubes with a second fluid flowing across those tubes. These distributed contactors thereby mix the fluids in a fairly uniform fashion causing a prescribed uniformity or variation in the ratio of the first to second fluid across the space. This thereby to generally creates and controls the physical and/or chemical changes in those fluids, including evaporation, condensation, forming powders and conducting chemical reactions including combustion.
    Type: Application
    Filed: October 15, 2003
    Publication date: March 17, 2005
    Inventors: David Hagen, Gary Ginter, Bill Goheen, Allan McGuire, Janet Rankin
  • Publication number: 20040244382
    Abstract: The invention relates in general to methods of controlled mixing one fluid with another. In particular it relates to a distributed direct fluid contactor including arrays of streamlined perforated tubes distributed across a flow to efficiently contact and mix one or more fluids flowing through one or more tubes with a second fluid flowing across those tubes. These distributed contactors thereby mix the fluids in a substantially uniform fashion causing a prescribed uniformity or variation in the ratio of the first to second fluid across the space. This thereby to generally creates and controls the physical and/or chemical changes in those fluids, including evaporation, condensation, forming powders and conducting chemical reactions including combustion.
    Type: Application
    Filed: September 12, 2003
    Publication date: December 9, 2004
    Inventors: David L. Hagen, Gary Ginter, Bill Goheen, Allan McGuire, Janet Rankin, J. Lyell Ginter, Gary Ginter