Patents by Inventor Alwin J. Tsao

Alwin J. Tsao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9397164
    Abstract: An integrated circuit and method having a deep collector vertical bipolar transistor with a first base tuning diffusion. A MOS transistor has a second base tuning diffusion. The first base tuning diffusion and the second base tuning diffusion are formed using the same implant.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: July 19, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Brian E. Hornung, Xiang-Zheng Bo, Amitava Chatterjee, Alwin J. Tsao
  • Patent number: 9379176
    Abstract: An integrated circuit containing a well resistor has STI field oxide and resistor dummy active areas in the well resistor. STI trenches are etched and filled with trench fill dielectric material. The trench fill dielectric material is removed from over the active areas by a CMP process, leaving STI field oxide in the STI trenches. Subsequently, dopants are implanted into a substrate in the well resistor area to form the well resistor. An integrated circuit containing a polysilicon resistor has STI field oxide and resistor dummy active areas in an area for the polysilicon resistor. A layer of polysilicon is formed and planarized by a CMP process. A polysilicon etch mask is formed over the CMP-planarized polysilicon layer to define the polysilicon resistor. A polysilicon etch process removes polysilicon in areas exposed by the polysilicon etch mask, leaving the polysilicon resistor.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: June 28, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Stephen Keith Heinrich-Barna, Douglas P. Verret, Alwin J. Tsao
  • Publication number: 20160079364
    Abstract: An integrated circuit and method having a deep collector vertical bipolar transistor with a first base tuning diffusion. A MOS transistor has a second base tuning diffusion. The first base tuning diffusion and the second base tuning diffusion are formed using the same implant.
    Type: Application
    Filed: November 18, 2015
    Publication date: March 17, 2016
    Inventors: Brian E. Hornung, Xiang-Zheng Bo, Amitava Chatterjee, Alwin J. Tsao
  • Publication number: 20160056227
    Abstract: An integrated circuit containing a well resistor has STI field oxide and resistor dummy active areas in the well resistor. STI trenches are etched and filled with trench fill dielectric material. The trench fill dielectric material is removed from over the active areas by a CMP process, leaving STI field oxide in the STI trenches. Subsequently, dopants are implanted into a substrate in the well resistor area to form the well resistor. An integrated circuit containing a polysilicon resistor has STI field oxide and resistor dummy active areas in an area for the polysilicon resistor. A layer of polysilicon is formed and planarized by a CMP process. A polysilicon etch mask is formed over the CMP-planarized polysilicon layer to define the polysilicon resistor. A polysilicon etch process removes polysilicon in areas exposed by the polysilicon etch mask, leaving the polysilicon resistor.
    Type: Application
    Filed: October 22, 2015
    Publication date: February 25, 2016
    Inventors: Stephen Keith Heinrich-Barna, Douglas P. Verret, Alwin J. Tsao
  • Patent number: 9245755
    Abstract: An integrated circuit and method having a deep collector vertical bipolar transistor with a first base tuning diffusion. A MOS transistor has a second base tuning diffusion. The first base tuning diffusion and the second base tuning diffusion are formed using the same implant.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: January 26, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Brian E. Hornung, Xiang-Zheng Bo, Amitava Chatterjee, Alwin J. Tsao
  • Publication number: 20150349046
    Abstract: An integrated circuit containing a well resistor has STI field oxide and resistor dummy active areas in the well resistor. STI trenches are etched and filled with trench fill dielectric material. The trench fill dielectric material is removed from over the active areas by a CMP process, leaving STI field oxide in the STI trenches. Subsequently, dopants are implanted into a substrate in the well resistor area to form the well resistor. An integrated circuit containing a polysilicon resistor has STI field oxide and resistor dummy active areas in an area for the polysilicon resistor. A layer of polysilicon is formed and planarized by a CMP process. A polysilicon etch mask is formed over the CMP-planarized polysilicon layer to define the polysilicon resistor. A polysilicon etch process removes polysilicon in areas exposed by the polysilicon etch mask, leaving the polysilicon resistor.
    Type: Application
    Filed: May 27, 2014
    Publication date: December 3, 2015
    Inventors: Stephen Keith Heinrich-Barna, Douglas P. Verret, Alwin J. Tsao
  • Patent number: 9202859
    Abstract: An integrated circuit containing a well resistor has STI field oxide and resistor dummy active areas in the well resistor. STI trenches are etched and filled with trench fill dielectric material. The trench fill dielectric material is removed from over the active areas by a CMP process, leaving STI field oxide in the STI trenches. Subsequently, dopants are implanted into a substrate in the well resistor area to form the well resistor. An integrated circuit containing a polysilicon resistor has STI field oxide and resistor dummy active areas in an area for the polysilicon resistor. A layer of polysilicon is formed and planarized by a CMP process. A polysilicon etch mask is formed over the CMP-planarized polysilicon layer to define the polysilicon resistor. A polysilicon etch process removes polysilicon in areas exposed by the polysilicon etch mask, leaving the polysilicon resistor.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: December 1, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Stephen Keith Heinrich-Barna, Douglas P. Verret, Alwin J. Tsao
  • Publication number: 20150187760
    Abstract: An integrated circuit and method having a deep collector vertical bipolar transistor with a first base tuning diffusion. A MOS transistor has a second base tuning diffusion. The first base tuning diffusion and the second base tuning diffusion are formed using the same implant.
    Type: Application
    Filed: December 18, 2014
    Publication date: July 2, 2015
    Inventors: Brian E. Hornung, Xiang-Zheng Bo, Amitava Chatterjee, Alwin J. Tsao
  • Patent number: 7274046
    Abstract: The present invention provides a tri-gate lower power device and method for fabricating that tri-gate semiconductor device. The tri-gate device includes a first gate [455] located over a high voltage gate dielectric [465] within a high voltage region [460], a second gate [435] located over a low voltage gate dielectric [445] within a low voltage core region [440] and a third gate [475] located over an intermediate core oxide [485] within an intermediate core region [480]. One method of fabrication includes forming a high voltage gate dielectric layer [465] over a semiconductor substrate [415], implanting a low dose of nitrogen [415a] into the semiconductor substrate [415] in a low voltage core region [440], and forming a core gate dielectric layer [445] over the low voltage core region [440], including forming an intermediate core gate dielectric layer [485] over an intermediate core region [480].
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: September 25, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Lahir Shaik Adam, Eddie H. Breashears, Alwin J. Tsao
  • Patent number: 7141480
    Abstract: The present invention provides a tri-gate lower power device and method for fabricating that tri-gate semiconductor device. The tri-gate device includes a first gate [455] located over a high voltage gate dielectric [465] within a high voltage region [460], a second gate [435] located over a low voltage gate dielectric [445] within a low voltage core region [440] and a third gate [475] located over an intermediate core oxide [485] within an intermediate core region [480]. One method of fabrication includes forming a high voltage gate dielectric layer [465] over a semiconductor substrate [415], implanting a low dose of nitrogen [415a] into the semiconductor substrate [415] in a low voltage core region [440], and forming a core gate dielectric layer [445] over the low voltage core region [440], including forming an intermediate core gate dielectric layer [485] over an intermediate core region [480].
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: November 28, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Lahir Shaik Adam, Eddie H. Breashears, Alwin J. Tsao
  • Patent number: 6693357
    Abstract: Semiconductor devices and manufacturing methods therefor are disclosed, in which conductive fill structures are provided in fill regions in an interconnect wiring layer between conductive wiring structures to facilitate planarization uniformity during metalization processing. One approach employs fill structures of varying sizes where smaller fill structures are formed near wiring regions having high aspect ratio wiring structures and larger fill structures are located near wiring regions with lower aspect ratio wiring structures. Another approach provides fill structures with varying amounts of openings, with fill structures having few or no openings being provided near low aspect ratio wiring structures and fill structures having more openings being located near higher aspect ratio wiring structures.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: February 17, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Christopher Lyle Borst, Alwin J. Tsao, Bobby David Strong, Noel Russell
  • Patent number: 6333238
    Abstract: An integrated circuit containing a resistor and the resistor per se. The circuit includes a substrate (2), a semiconductor resistor (3) on the substrate and a layer of electrically insulating material (5) disposed over the substrate and the semiconductor resistor having at least one contact (11, 13, 15) extending therethrough to the semiconductor resistor, the contact having an electrical path therein extending to and forming an interface with an end portion of the semiconductor resistor. The semiconductor resistor has a semiconductor resistor body, preferably of doped polysilicon, having one of a positive or negative temperature coefficient of resistance and a resistor head. The resistor head consists essentially of the electrical path which is metal interconnect, the contacts and then interface to and from the resistor body and in contact with the resistor body, the resistor head having the other of a positive or negative temperature coefficient of resistance.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: December 25, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Greg C. Baldwin, Alwin J. Tsao
  • Publication number: 20010000122
    Abstract: An integrated circuit containing a resistor and the resistor per se. The circuit includes a substrate (2) , a semiconductor resistor (3) on the substrate and a layer of electrically insulating material (5) disposed over the substrate and the semiconductor resistor having at least one contact (11, 13, 15) extending therethrough to the semiconductor resistor, the contact having an electrical path therein extending to and forming an interface with an end portion of the semiconductor resistor. The semiconductor resistor has a semiconductor resistor body, preferably of doped polysilicon, having one of a positive or negative temperature coefficient of resistance and a resistor head. The resistor head consists essentially of the electrical path which is metal interconnect, the contacts and then interface to and from the resistor body and in contact with the resistor body, the resistor head having the other of a positive or negative temperature coefficient of resistance.
    Type: Application
    Filed: December 6, 2000
    Publication date: April 5, 2001
    Inventors: Greg C. Baldwin, Alwin J. Tsao
  • Patent number: 6211769
    Abstract: An integrated circuit containing a resistor and the resistor per se. The circuit includes a substrate (2), a semiconductor resistor (3) on the substrate and a layer of electrically insulating material (5) disposed over the substrate and the semiconductor resistor having at least one contact (11, 13, 15) extending therethrough to the semiconductor resistor, the contact having an electrical path therein extending to and forming an interface with an end portion of the semiconductor resistor. The semiconductor resistor has a semiconductor resistor body, preferably of doped polysilicon, having one of a positive or negative temperature coefficient of resistance and a resistor head. The resistor head consists essentially of the electrical path which is metal interconnect, the contacts and then interface to and from the resistor body and in contact with the resistor body, the resistor head having the other of a positive or negative temperature coefficient of resistance.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: April 3, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Greg C. Baldwin, Alwin J. Tsao
  • Patent number: 6162728
    Abstract: A method for forming copper interconnect lines using a damascene process. After the formation of the copper seed layer (112) and prior to the formation of the copper layer (120), a pattern (114) is formed to block the formation of the copper in non-interconnect areas. The copper layer (120) is then formed and the pattern (114) is removed. The exposed seed layer (112) and any barrier layers (110) thereunder are removed.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: December 19, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Alwin J. Tsao, Paul M. Gillespie
  • Patent number: 6143594
    Abstract: In a split gate process for dual voltage chips, the N-type high-voltage transistors which are part of the ESD protection circuit, and therefore have the thicker gate oxide of the high-voltage transistors, can receive channel doping and drain extender doping which is the same as the core transistors. This causes these transistors to develop a high substrate current during an ESD event, triggering the protection circuit.
    Type: Grant
    Filed: January 26, 2000
    Date of Patent: November 7, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Alwin J. Tsao, Vikas I. Gupta, Gregory C. Baldwin, E. Ajith Amerasekera, David B. Spratt, Timothy A. Rost
  • Patent number: 6137144
    Abstract: In a split gate process for dual voltage chips, the N-type high-voltage transistors which are part of the ESD protection circuit, and therefore have the thicker gate oxide of the high-voltage transistors, can receive channel doping and drain extender doping which is the same as the core transistors. This causes these transistors to develop a high substrate current during an ESD event, triggering the protection circuit.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: October 24, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Alwin J. Tsao, Vikas I. Gupta, Gregory C. Baldwin, E. Ajith Amerasekera, David B. Spratt, Timothy A. Rost