Patents by Inventor Ameet Shridhar Deshpande

Ameet Shridhar Deshpande has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11661919
    Abstract: A method for controlling a wind turbine connected to an electrical grid includes receiving, via a controller, a state estimate of the wind turbine. The method also includes determining, via the controller, a current condition of the wind turbine using, at least, the state estimate, the current condition defining a set of condition parameters of the wind turbine. Further, the method includes receiving, via the controller, a control function from a supervisory controller, the control function defining a relationship of the set of condition parameters with at least one operational parameter of the wind turbine. Moreover, the method includes dynamically controlling, via the controller, the wind turbine based on the current condition and the control function for multiple dynamic control intervals.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: May 30, 2023
    Assignee: General Electric Company
    Inventors: Frederick Wilson Wheeler, Dayu Huang, George Theodore Dalakos, Ameet Shridhar Deshpande, Su Liu, Dhiraj Arora, Siyun Wang
  • Patent number: 11635060
    Abstract: A method for operating a wind turbine includes determining one or more loading and travel metrics or functions thereof for one or more components of the wind turbine during operation of the wind turbine. The method also includes generating, at least in part, at least one distribution of cumulative loading data for the one or more components using the one or more loading and travel metrics during operation of the wind turbine. Further, the method includes applying a life model of the one or more components to the at least one distribution of cumulative loading data to determine an actual damage accumulation for the one or more components of the wind turbine to date. Moreover, the method includes implementing a corrective action for the wind turbine based on the damage accumulation.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: April 25, 2023
    Assignee: General Electric Company
    Inventors: Dayu Huang, Frederick Wilson Wheeler, George Theodore Dalakos, Ameet Shridhar Deshpande, Su Liu
  • Publication number: 20230003192
    Abstract: A method for preventing a pitch bearing failure of a pitch system of a wind turbine includes monitoring, via at least one sensor, one or more electrical signals of a pitch motor of a pitch drive mechanism of the pitch system that drives a pitch bearing of the pitch system. The method also includes analyzing, via the controller, the one or more electrical signals of the pitch motor so as to remove noise and amplify outliers. Moreover, the method includes estimating bearing friction of the pitch bearing using the analyzed one or more electrical signals of the pitch motor. As such, the method includes implementing, via the controller, a control action when the estimated bearing friction of the pitch bearing indicates an anomaly in the pitch bearing.
    Type: Application
    Filed: October 30, 2019
    Publication date: January 5, 2023
    Inventors: Ameet Shridhar Deshpande, John Joseph Mihok, Ashley Simone Wilford, Michael James Rizzo, Santiago Murcia
  • Publication number: 20220228559
    Abstract: A method for controlling a wind turbine connected to an electrical grid includes receiving, via a controller, a state estimate of the wind turbine. The method also includes determining, via the controller, a current condition of the wind turbine using, at least, the state estimate, the current condition defining a set of condition parameters of the wind turbine. Further, the method includes receiving, via the controller, a control function from a supervisory controller, the control function defining a relationship of the set of condition parameters with at least one operational parameter of the wind turbine. Moreover, the method includes dynamically controlling, via the controller, the wind turbine based on the current condition and the control function for multiple dynamic control intervals.
    Type: Application
    Filed: January 20, 2021
    Publication date: July 21, 2022
    Inventors: Frederick Wilson Wheeler, Dayu Huang, George Theodore Dalakos, Ameet Shridhar Deshpande, Su Liu, Dhiraj Arora, Siyun Wang
  • Publication number: 20220228560
    Abstract: A method for operating a wind turbine includes determining one or more loading and travel metrics or functions thereof for one or more components of the wind turbine during operation of the wind turbine. The method also includes generating, at least in part, at least one distribution of cumulative loading data for the one or more components using the one or more loading and travel metrics during operation of the wind turbine. Further, the method includes applying a life model of the one or more components to the at least one distribution of cumulative loading data to determine an actual damage accumulation for the one or more components of the wind turbine to date. Moreover, the method includes implementing a corrective action for the wind turbine based on the damage accumulation.
    Type: Application
    Filed: January 20, 2021
    Publication date: July 21, 2022
    Inventors: Dayu Huang, Frederick Wilson Wheeler, George Theodore Dalakos, Ameet Shridhar Deshpande, Su Liu
  • Publication number: 20210115896
    Abstract: A method for mitigating loads acting on a rotor blade of a wind turbine includes determining, via a state estimator of a controller, a blade state estimation of the rotor blade. The method also includes reconstructing, via the controller, one or more loading signals of the rotor blade from the blade state estimation using modal analysis such that the loading signal(s) include a lead time. Further, the method includes comparing the loading signal(s) of the rotor blade to a loading threshold. Moreover, the method includes implementing a control action based on the comparison such that the lead time provided by the loading signal(s) allows the control action to take effect before a damaging load occurs on the rotor blade.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 22, 2021
    Inventors: Ameet Shridhar Deshpande, Shuang Gu, Pranav Agarwal, Prashanth Kumar Reddy Vaddi, Bernard Landa, Arne Koerber
  • Patent number: 10808681
    Abstract: A method for controlling a wind turbine based on aerodynamic performance maps that account for blade twist includes controlling the wind turbine based on at least one aerodynamic performance map. Further, the method includes determining at least one speed parameter of the wind turbine. Moreover, the method includes determining a blade torsional stiffness factor. Thus, the method further includes determining, via the processor, a twist correction factor for the aerodynamic performance map as a function of the at least one speed parameter and the blade torsional stiffness factor. The method then includes applying the twist correction factor to the at least one aerodynamic performance map to obtain an adjusted aerodynamic performance map. In addition, the method includes controlling the wind turbine based on the adjusted aerodynamic performance map.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: October 20, 2020
    Assignee: General Electric Company
    Inventors: Ameet Shridhar Deshpande, Arne Koerber, Sara Simonne Delport
  • Patent number: 10774810
    Abstract: The present disclosure is directed to a method for estimating tower loads, such as tower deflection, of a wind turbine. The method includes receiving an estimate of slow variations in thrust of a tower of the wind turbine. The method also includes determining, via one or more sensors, tower accelerations of the tower of the wind turbine. Thus, the method also includes estimating the tower loads of the wind turbine as a function of the estimate of slow variations in thrust of the tower and the tower accelerations.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: September 15, 2020
    Assignee: General Electric Company
    Inventors: Ameet Shridhar Deshpande, Pranav Agarwal
  • Publication number: 20190226451
    Abstract: A method for controlling a wind turbine based on aerodynamic performance maps that account for blade twist includes controlling the wind turbine based on at least one aerodynamic performance map. Further, the method includes determining at least one speed parameter of the wind turbine. Moreover, the method includes determining a blade torsional stiffness factor. Thus, the method further includes determining, via the processor, a twist correction factor for the aerodynamic performance map as a function of the at least one speed parameter and the blade torsional stiffness factor. The method then includes applying the twist correction factor to the at least one aerodynamic performance map to obtain an adjusted aerodynamic performance map. In addition, the method includes controlling the wind turbine based on the adjusted aerodynamic performance map.
    Type: Application
    Filed: January 23, 2018
    Publication date: July 25, 2019
    Inventors: Ameet Shridhar Deshpande, Arne Koerber, Sara Simonne Delport
  • Patent number: 10100812
    Abstract: A wind turbine system is presented. The wind turbine system includes a wind turbine tower, a plurality of blades, a rotor supported by the wind turbine tower and rotatably coupled to the plurality of blades, a torque control device coupled to the rotor, and a control system programmed to predict an over-speeding time T of an occurrence of an over-speed rotor event based at least in part upon a current rotor acceleration and a current rotor speed, that cannot be compensated by an available counter-torque margin of the torque control device, and, in response, to generate pitch commands for the pitch angles of the plurality of blades to avoid the over-speed rotor event.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: October 16, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ameet Shridhar Deshpande, Pranav Agarwal
  • Patent number: 10047722
    Abstract: The present disclosure is directed to a method for controlling a wind turbine having a rotor with a plurality of rotor blades mounted thereto based on a spatial wind speed distribution. The method includes monitoring, via at least one sensor, one or more operating conditions of the wind turbine. The method also includes determining a rotor azimuth angle of the wind turbine. In addition, the method includes determining, via a physics-based model, at least one individual wind speed for one or more of the rotor blades of the wind turbine based on the one or more operating conditions and the rotor azimuth angle. The method also includes determining a spatial wind speed distribution of the wind turbine based on the at least one individual wind speed. Thus, the method further includes controlling the wind turbine based on the spatial wind speed distribution.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: August 14, 2018
    Assignee: General Electric Company
    Inventors: Prashanth Kumar Reddy Vaddi, Venkata Krishna Vadlamudi, Pranav Agarwal, Ameet Shridhar Deshpande
  • Patent number: 9926912
    Abstract: The present disclosure is directed to a system and method for estimating an overall wind coherence acting on a wind turbine and using same to dynamically adapt the gain or bandwidth of pitch or torque or yaw control logic within a wind turbine. The method includes generating, via sensors, a plurality of sensor signals reflective of wind conditions near the wind turbine. The method also includes filtering, via at least one filter, the sensor signals at a predetermined frequency range considered damaging for turbine sub-system loading. Thus, the method also includes estimating an overall damaging wind coherence acting on the wind turbine as a function of distance-normalized wind coherences, which themselves are derived from auto and cross-covariances of pairs of filtered signals. The distance normalization uses a model of natural coherence dissipation with distance.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: March 27, 2018
    Assignee: General Electric Company
    Inventors: Ameet Shridhar Deshpande, Timothy J. McCoy, Sandeep Gupta
  • Publication number: 20180058425
    Abstract: The present disclosure is directed to a system and method for estimating an overall wind coherence acting on a wind turbine and using same to dynamically adapt the gain or bandwidth of pitch or torque or yaw control logic within a wind turbine. The method includes generating, via sensors, a plurality of sensor signals reflective of wind conditions near the wind turbine. The method also includes filtering, via at least one filter, the sensor signals at a predetermined frequency range considered damaging for turbine sub-system loading. Thus, the method also includes estimating an overall damaging wind coherence acting on the wind turbine as a function of distance-normalized wind coherences, which themselves are derived from auto and cross-covariances of pairs of filtered signals. The distance normalization uses a model of natural coherence dissipation with distance.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 1, 2018
    Inventors: Ameet Shridhar Deshpande, Timothy J. McCoy, Sandeep Gupta
  • Publication number: 20180030955
    Abstract: The present disclosure is directed to a method for controlling a wind turbine having a rotor with a plurality of rotor blades mounted thereto based on a spatial wind speed distribution. The method includes monitoring, via at least one sensor, one or more operating conditions of the wind turbine. The method also includes determining a rotor azimuth angle of the wind turbine. In addition, the method includes determining, via a physics-based model, at least one individual wind speed for one or more of the rotor blades of the wind turbine based on the one or more operating conditions and the rotor azimuth angle. The method also includes determining a spatial wind speed distribution of the wind turbine based on the at least one individual wind speed. Thus, the method further includes controlling the wind turbine based on the spatial wind speed distribution.
    Type: Application
    Filed: July 28, 2016
    Publication date: February 1, 2018
    Inventors: Prashanth Kumar Reddy Vaddi, Venkata Krishna Vadlamudi, Pranav Agarwal, Ameet Shridhar Deshpande
  • Publication number: 20180003154
    Abstract: A method for constrained control of a wind turbine includes receiving a plurality of operating parameters corresponding to the wind turbine. The plurality of operating parameters includes a wind preview parameter and a plurality of constraint parameters. The method further includes generating a constraint parameter estimate corresponding to a future time instant for at least one constraint parameter of the plurality of constraint parameters based on the plurality of operating parameters and a wind preview model. The method also includes predicting an extreme event corresponding to the at least one constraint parameter based on the constraint parameter estimate. The method includes determining a control parameter value corresponding to a wind turbine control parameter among a plurality of wind turbine control parameters. The method also includes operating the wind turbine using a feedforward control technique based on the control parameter value to circumvent the extreme event.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: Ameet Shridhar Deshpande, Pranav Agarwal, Conner Brooks Shane
  • Publication number: 20170306926
    Abstract: The present disclosure is directed to a method for estimating tower loads, such as tower deflection, of a wind turbine. The method includes receiving an estimate of slow variations in thrust of a tower of the wind turbine. The method also includes determining, via one or more sensors, tower accelerations of the tower of the wind turbine. Thus, the method also includes estimating the tower loads of the wind turbine as a function of the estimate of slow variations in thrust of the tower and the tower accelerations.
    Type: Application
    Filed: April 25, 2016
    Publication date: October 26, 2017
    Inventors: Ameet Shridhar Deshpande, Pranav Agarwal
  • Patent number: 9587629
    Abstract: A wind turbine system is presented. The wind turbine system includes a tower, a plurality of blades, a rotor supported by the tower and rotatably coupled to the plurality of blades, a control unit programmed to predict a net energy of the tower at one or more future points in time, and if the predicted net energy is within a design limit, then continue with baseline operating control models for normal operation of the wind turbine system, if the predicted net energy exceeds the design limit, then use a non-linear tower damping model to generate tower damping commands to control tower damping of the wind turbine system.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: March 7, 2017
    Assignee: General Electric Company
    Inventors: Ameet Shridhar Deshpande, Pranav Agarwal
  • Publication number: 20150377213
    Abstract: A wind turbine system is presented. The wind turbine system includes a tower, a plurality of blades, a rotor supported by the tower and rotatably coupled to the plurality of blades, a control unit programmed to predict a net energy of the tower at one or more future points in time, and if the predicted net energy is within a design limit, then continue with baseline operating control models for normal operation of the wind turbine system, if the predicted net energy exceeds the design limit, then use a non-linear tower damping model to generate tower damping commands to control tower damping of the wind turbine system.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 31, 2015
    Inventors: Ameet Shridhar Deshpande, Pranav Agarwal
  • Publication number: 20150377216
    Abstract: A wind turbine system is presented. The wind turbine system includes a wind turbine tower, a plurality of blades, a rotor supported by the wind turbine tower and rotatably coupled to the plurality of blades, a torque control device coupled to the rotor, and a control system programmed to predict an over-speeding time T of an occurrence of an over-speed rotor event based at least in part upon a current rotor acceleration and a current rotor speed, that cannot be compensated by an available counter-torque margin of the torque control device, and, in response, to generate pitch commands for the pitch angles of the plurality of blades to avoid the over-speed rotor event.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 31, 2015
    Inventors: Ameet Shridhar Deshpande, Pranav Agarwal
  • Patent number: 8649911
    Abstract: A technique is provided for operating a wind farm at increased rated power output. The technique includes sensing a plurality of operating parameters of the wind turbine generator, assessing the plurality of operating parameters with respect to respective design ratings for the operating parameters, and intermittently increasing a rated power output of the wind turbine generator based upon the assessment.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: February 11, 2014
    Assignee: General Electric Company
    Inventors: Aaron John Avagliano, Ralph Teichmann, Kirk Gee Pierce, Paul David Hopewell, Ameet Shridhar Deshpande, Sukru Alper Eker