Patents by Inventor Amy L. Santoni

Amy L. Santoni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190004112
    Abstract: A processor, including: a core; system test circuitry, the system test circuitry to be locked during operational processor operation; reset circuitry including a kick-off test (KOT) input, the reset circuitry to detect a reset with the KOT input asserted, and to initiate an in-field system test (IFST) mode; a test interface controller to receive in IFST mode an encrypted test packet having a signature, verify the signature of the test packet, and decrypt the test packet; and IFST control circuitry to cause the system test circuitry to perform an IFST test according to the decrypted test packet and to log or report results.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Inventors: Sreejit Chakravarty, Oscar Mendoza, Ramasubramanian Rajamani, Bryan J. Gran, Sorin Iacobovici, Neel Shah, Michael Neve de Mevergnies, John Cruz Mejia, Amy L. Santoni
  • Publication number: 20190007200
    Abstract: A processor, including: a core; system test circuitry, the system test circuitry configured to be locked except during an in-field system test (IFST) mode; IFST control circuitry; and a test interface controller, including: a data interface to receive a test packet; a parser to parse the test packet into a key, a signature, and a stored hash-of-hashes; a decryption circuit to decrypt the signature according to the key and to generate a computed hash-of-hashes; a hash circuit to verify the stored hash-of-hashes against the computed hash-of-hashes; and an IFST interface, wherein the test interface controller is to signal the IFST control circuitry to place the system test circuitry in IFST mode.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Inventors: Neel Shah, Kirk S. Yap, Amy L. Santoni, Michael Neve de Mevergnies, Oscar Mendoza, Sreejit Chakravarty, Ramasubramanian Rajamani, Bryan J. Gran, Sorin Iacobovici
  • Publication number: 20180365438
    Abstract: A processor implementing techniques for supporting configurable security levels for memory address ranges is disclosed. In one embodiment, the processor includes a processing core a memory controller, operatively coupled to the processing core, to access data in an off-chip memory and a memory encryption engine (MEE) operatively coupled to the memory controller. The MEE is to responsive to detecting a memory access operation with respect to a memory location identified by a memory address within a memory address range associated with the off-chip memory, identify a security level indicator associated with the memory location based on a value stored on a security range register. The MEE is further to access at least a portion of a data item associated with the memory address range of the off-chip memory in view of the security level indicator.
    Type: Application
    Filed: April 5, 2018
    Publication date: December 20, 2018
    Inventors: Binata Bhattacharyya, Raghunandan Makaram, Amy L. Santoni, George Z. Chrysos, Simon P. Johnson, Brian S. Morris, Francis X. McKeen
  • Publication number: 20180239713
    Abstract: A processor for supporting secure memory intent is disclosed. The processor of the disclosure includes a memory execution unit to access memory and a processor core coupled to the memory execution unit. The processor core is to receive a request to access a convertible page of the memory. In response to the request, the processor core to determine an intent for the convertible page in view of a page table entry (PTE) corresponding to the convertible page. The intent indicates whether the convertible page is to be accessed as at least one of a secure page or a non-secure page.
    Type: Application
    Filed: January 3, 2018
    Publication date: August 23, 2018
    Inventors: Krystof C. Zmudzinski, Siddhartha Chhabra, Uday R. Savagaonkar, Simon P. Johnson, Rebekah M. Leslie-Hurd, Francis X. McKeen, Gilbert Neiger, Raghunandan Makaram, Carlos V. Rozas, Amy L. Santoni, Vincent R. Scarlata, Vedvyas Shanbhogue, Ilya Alexandrovich, Ittai Anati, Wesley H. Smith, Michael Goldsmith
  • Patent number: 9959418
    Abstract: A processor implementing techniques for supporting configurable security levels for memory address ranges is disclosed. In one embodiment, the processor includes a processing core a memory controller, operatively coupled to the processing core, to access data in an off-chip memory and a memory encryption engine (MEE) operatively coupled to the memory controller. The MEE is to responsive to detecting a memory access operation with respect to a memory location identified by a memory address within a memory address range associated with the off-chip memory, identify a security level indicator associated with the memory location based on a value stored on a security range register. The MEE is further to access at least a portion of a data item associated with the memory address range of the off-chip memory in view of the security level indicator.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: May 1, 2018
    Assignee: Intel Corporation
    Inventors: Binata Bhattacharyya, Raghunandan Makaram, Amy L. Santoni, George Z. Chrysos, Simon P. Johnson, Brian S. Morris, Francis X. McKeen
  • Patent number: 9875189
    Abstract: A processor for supporting secure memory intent is disclosed. The processor of the disclosure includes a memory execution unit to access memory and a processor core coupled to the memory execution unit. The processor core is to receive a request to access a convertible page of the memory. In response to the request, the processor core to determine an intent for the convertible page in view of a page table entry (PTE) corresponding to the convertible page. The intent indicates whether the convertible page is to be accessed as at least one of a secure page or a non-secure page.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: January 23, 2018
    Assignee: Intel Corporation
    Inventors: Krystof C. Zmudzinski, Siddhartha Chhabra, Uday R. Savagaonkar, Simon P. Johnson, Rebekah M. Leslie-Hurd, Francis X. McKeen, Gilbert Neiger, Raghunandan Makaram, Carlos V. Rozas, Amy L. Santoni, Vincent R. Scarlata, Vedvyas Shanbhogue, Ilya Alexandrovich, Ittai Anati, Wesley H. Smith, Michael Goldsmith
  • Patent number: 9767044
    Abstract: Secure memory repartitioning technologies are described. A processor includes a processor core and a memory controller coupled between the processor core and main memory. The main memory includes a memory range including a section of convertible pages that are convertible to secure pages or non-secure pages. The processor core, in response to a page conversion instruction, is to determine from the instruction a convertible page in the memory range to be converted and convert the convertible page to be at least one of a secure page or a non-secure page. The memory range may also include a hardware reserved section that is convertible in response to a section conversion instruction.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: September 19, 2017
    Assignee: Intel Corporation
    Inventors: Siddhartha Chhabra, Uday R. Savagaonkar, Michael A. Goldsmith, Simon P. Johnson, Rebekah M. Leslie-Hurd, Francis X. McKeen, Gilbert Neiger, Raghunandan Makaram, Carlos V. Rozas, Amy L. Santoni, Vincent R. Scarlata, Vedvyas Shanbhogue, Wesley H. Smith, Ittai Anati, Ilya Alexandrovich
  • Patent number: 9612930
    Abstract: In an embodiment, a processor includes at least one core, a power management unit having a first test register including a first field to store a test patch identifier associated with a test patch and a second field to store a test mode indicator to request a core functionality test, and a microcode storage to store microcode to be executed by the at least one core. Responsive to the test patch identifier, the microcode may access a firmware interface table and obtain the test patch from a non-volatile storage according to an address obtained from the firmware interface table. Other embodiments are described and claimed.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: April 4, 2017
    Assignee: Intel Corporation
    Inventors: Vedvyas Shanbhogue, Eric Rasmussen, Deep K. Buch, Gordon McFadden, Kameswar Subramaniam, Amy L. Santoni, Willard M. Wiseman, Bret L. Toll
  • Publication number: 20170024573
    Abstract: A processor implementing techniques for supporting configurable security levels for memory address ranges is disclosed. In one embodiment, the processor includes a processing core a memory controller, operatively coupled to the processing core, to access data in an off-chip memory and a memory encryption engine (MEE) operatively coupled to the memory controller. The MEE is to responsive to detecting a memory access operation with respect to a memory location identified by a memory address within a memory address range associated with the off-chip memory, identify a security level indicator associated with the memory location based on a value stored on a security range register. The MEE is further to access at least a portion of a data item associated with the memory address range of the off-chip memory in view of the security level indicator.
    Type: Application
    Filed: July 20, 2015
    Publication date: January 26, 2017
    Inventors: Binata Bhattacharyya, Raghunandan Makaram, Amy L. Santoni, George Z. Chrysos, Simon P. Johnson, Brian S. Morris, Francis X. McKeen
  • Publication number: 20160364308
    Abstract: In an embodiment, a processor includes at least one core, a power management unit having a first test register including a first field to store a test patch identifier associated with a test patch and a second field to store a test mode indicator to request a core functionality test, and a microcode storage to store microcode to be executed by the at least one core. Responsive to the test patch identifier, the microcode may access a firmware interface table and obtain the test patch from a non-volatile storage according to an address obtained from the firmware interface table. Other embodiments are described and claimed.
    Type: Application
    Filed: June 12, 2015
    Publication date: December 15, 2016
    Inventors: Vedvyas Shanbhogue, Eric Rasmussen, Deep K. Buch, Gordon McFadden, Kameswar Subramaniam, Amy L. Santoni, Willard M. Wiseman, Bret L. Toll
  • Publication number: 20160364338
    Abstract: A processor for supporting secure memory intent is disclosed. The processor of the disclosure includes a memory execution unit to access memory and a processor core coupled to the memory execution unit. The processor core is to receive a request to access a convertible page of the memory. In response to the request, the processor core to determine an intent for the convertible page in view of a page table entry (PTE) corresponding to the convertible page. The intent indicates whether the convertible page is to be accessed as at least one of a secure page or a non-secure page.
    Type: Application
    Filed: June 12, 2015
    Publication date: December 15, 2016
    Inventors: Krystof C. Zmudzinski, Siddhartha Chhabra, Uday R. Savagaonkar, Simon P. Johnson, Rebekah M. Leslie-Hurd, Francis X. McKeen, Gilbert Neiger, Raghunandan Makaram, Carlos V. Rozas, Amy L. Santoni, Vincent R. Scarlata, Vedvyas Shanbhogue, Ilya Alexandrovich, Ittai Anati, Wesley H. Smith, Michael Goldsmith
  • Publication number: 20160328335
    Abstract: Systems and methods for memory protection for implementing trusted execution environment. An example processing system comprises: an on-package memory; a memory encryption engine (MEE) comprising a MEE cache, the MEE to: responsive to failing to locate, within the MEE cache, an encryption metadata associated with a data item loaded from an external memory, retrieve at least part of the encryption metadata from the OPM, and validate the data item using the encryption metadata.
    Type: Application
    Filed: May 4, 2015
    Publication date: November 10, 2016
    Inventors: BINATA BHATTACHARYYA, AMY L. SANTONI, RAGHUNANDAN MAKARAM, FRANCIS X. MCKEEN, SIMON P. JOHNSON, GEORGE Z. CHRYSOS, SIDDHARTHA CHHABRA
  • Patent number: 9448950
    Abstract: Systems and methods for secure delivery of output surface bitmaps to a display engine. An example processing system comprises: an architecturally protected memory; and a plurality of processing devices communicatively coupled to the architecturally protected memory, each processing device comprising a first processing logic to implement an architecturally-protected execution environment by performing at least one of: executing instructions residing in the architecturally protected memory, or preventing an unauthorized access to the architecturally protected memory; wherein each processing device further comprises a second processing logic to establish a secure communication channel with a second processing device of the processing system, employ the secure communication channel to synchronize a platform identity key representing the processing system, and transmit a platform manifest comprising the platform identity key to a certification system.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: September 20, 2016
    Assignee: Intel Corporation
    Inventors: Vincent R. Scarlata, Simon P. Johnson, Vladimir Beker, Jesse Walker, Carlos V. Rozas, Amy L. Santoni, Ittai Anati, Raghunandan Makaram, Francis X. McKeen, Uday R. Savagaonkar
  • Publication number: 20150178226
    Abstract: Systems and methods for secure delivery of output surface bitmaps to a display engine. An example processing system comprises: an architecturally protected memory; and a plurality of processing devices communicatively coupled to the architecturally protected memory, each processing device comprising a first processing logic to implement an architecturally-protected execution environment by performing at least one of: executing instructions residing in the architecturally protected memory, or preventing an unauthorized access to the architecturally protected memory; wherein each processing device further comprises a second processing logic to establish a secure communication channel with a second processing device of the processing system, employ the secure communication channel to synchronize a platform identity key representing the processing system, and transmit a platform manifest comprising the platform identity key to a certification system.
    Type: Application
    Filed: December 24, 2013
    Publication date: June 25, 2015
    Inventors: Vincent R. Scarlata, Simon P. Johnson, Vladimir Beker, Jesse Walker, Carlos V. Rozas, Amy L. Santoni, Ittai Anati, Raghunandan Makaram, Francis X. McKeen, Uday R. Savagaonkar
  • Publication number: 20150089173
    Abstract: Secure memory repartitioning technologies are described. A processor includes a processor core and a memory controller coupled between the processor core and main memory. The main memory includes a memory range including a section of convertible pages are convertible to secure pages or non-secure pages. The processor core, in response to a page conversion instruction, is to determine from the instruction a convertible page in the memory range to be converted and convert the convertible page to be at least one of a secure page or a non-secure page. The memory range may also include a hardware reserved section are convertible in response to a section conversion instruction.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 26, 2015
    Inventors: Siddhartha Chhabra, Uday R. Savagaonkar, Michael A. Goldsmith, Simon P. Johnson, Rebekah M. Leslie-Hurd, Francis X. McKeen, Gilbert Neiger, Raghunandan Makaram, Carlos V. Rozas, Amy L. Santoni, Vincent R. Scarlata, Vedvyas Shanbhogue, Wesley H. Smith, Ittai Anati, Ilya Alexandrovich
  • Publication number: 20120240116
    Abstract: Embodiments of apparatuses and methods for improving performance in a virtualization architecture are disclosed. In one embodiment, an apparatus includes a processor and a processor abstraction layer. The processor abstraction layer includes instructions that, when executed by the processor, support techniques to improve the performance of the apparatus in a virtualization architecture.
    Type: Application
    Filed: May 30, 2012
    Publication date: September 20, 2012
    Inventors: Hin L. Leung, Amy L. Santoni, Gary N. Hammond, William R. Greene, Kushagra V. Vaid, Dale Morris, Jonathan Ross
  • Patent number: 8214830
    Abstract: Embodiments of apparatuses and methods for improving performance in a virtualization architecture are disclosed. In one embodiment, an apparatus includes a processor and a processor abstraction layer. The processor abstraction layer includes instructions that, when executed by the processor, support techniques to improve the performance of the apparatus in a virtualization architecture.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: July 3, 2012
    Assignee: Intel Corporation
    Inventors: Hin L. Leung, Amy L. Santoni, Gary N. Hammond, William R. Greene, Kushagra V. Vaid, Dale Morris, Jonathan Ross
  • Patent number: 7849327
    Abstract: A technique to improve the performance of virtualized input/output (I/O) resources of a microprocessor within a virtual machine environment. More specifically, embodiments of the invention enable accesses of virtualized I/O resources to be made by guest software without necessarily invoking host software. Furthermore, embodiments of the invention enable more efficient delivery of interrupts to guest software by alleviating the need for host software to be invoked in the delivery process.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: December 7, 2010
    Inventors: Hin L. Leung, Kushagra V. Vaid, Amy L. Santoni, Dale Morris, Jonathan Ross