Patents by Inventor Anant Achyut Setlur

Anant Achyut Setlur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9376615
    Abstract: A process for synthesizing a Mn4+ doped phosphor includes contacting a precursor of formula I, at an elevated temperature with a fluorine-containing oxidizing agent in gaseous form to form the color stable Mn4+ doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and amount of Mn ranges from about 0.9 wt % to about 4 wt %, based on total weight.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: June 28, 2016
    Assignee: General Electric Company
    Inventors: James Edward Murphy, Florencio Garcia, Ashfaqul Islam Chowdhury, Srinivas Prasad Sista, Anant Achyut Setlur
  • Patent number: 9371481
    Abstract: A process for synthesizing a Mn4+ doped phosphor includes contacting a precursor of formula I, Ax[MFy]:Mn4+?? I at any temperature in a range from about 200° C. to about 700° C. with a fluorine-containing oxidizing agent in gaseous form; maintaining the temperature during a contact period of at least one hour; and, after the contact period, reducing the temperature at a rate of ?5° C. per minute; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: June 21, 2016
    Assignee: General Electric Company
    Inventors: Florencio Garcia, Anant Achyut Setlur, James Edward Murphy, Srinivas Prasad Sista
  • Publication number: 20160153842
    Abstract: A method of monitoring a surface temperature of a hot gas path component includes directing an excitation beam having an excitation wavelength at a layer of a sensor material composition deposited on a hot gas path component to induce a fluorescent radiation. The method includes measuring fluorescent radiation emitted by the sensor material composition. The fluorescent radiation includes at least a first intensity at a first wavelength and a second intensity at a second wavelength. The surface temperature of the hot gas path component is determined based on a ratio of the first intensity at the first wavelength and the second intensity at the second wavelength of the fluorescent radiation emitted by the sensor material composition.
    Type: Application
    Filed: October 2, 2014
    Publication date: June 2, 2016
    Inventors: Mark Allen Cheverton, Anant Achyut Setlur, Victor Petrovich Ostroverkhov, Guanghua Wang, James Anthony Brewer, Venkat Subramaniam Venkataramani
  • Publication number: 20160097719
    Abstract: A method of monitoring a surface temperature of an environmental barrier coating (EBC) of a hot gas component includes directing an excitation beam having a first wavelength at a layer of a temperature indicator formed on the hot gas component. The method also includes measuring a fluorescent radiation emitted by the temperature indicator. The fluorescent radiation has a second wavelength and an intensity. In addition, the method includes determining a surface temperature of the EBC based on the intensity of the second wavelength of the fluorescent radiation.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 7, 2016
    Inventors: Mark Allen Cheverton, Anant Achyut Setlur, Victor Petrovich Ostroverkhov, Guanghua Wang, Joseph John Shiang
  • Publication number: 20160093776
    Abstract: A lighting apparatus is presented. The lighting apparatus includes a semiconductor light source, a color stable Mn4+ doped phosphor and a quantum dot material, each of the color stable Mn4+ doped phosphor and the quantum dot material being radiationally coupled to the semiconductor light source. A percentage intensity loss of the color stable Mn4| doped phosphor after exposure to a light flux of at least 20 w/cm2 at a temperature of at least 50 degrees Celsius for at least 21 hours is ?4%. A backlight device including the lighting apparatus is also presented.
    Type: Application
    Filed: December 8, 2015
    Publication date: March 31, 2016
    Inventors: Anant Achyut Setlur, James Edward Murphy, Florencio Garcia, Srinivas Prasad Sista
  • Publication number: 20150361336
    Abstract: A process for synthesizing a Mn4+ doped phosphor includes contacting a precursor of formula I, Ax[MFy]:Mn4+??I at any temperature in a range from about 200° C. to about 700° C. with a fluorine-containing oxidizing agent in gaseous form; maintaining the temperature during a contact period of at least one hour; and, after the contact period, reducing the temperature at a rate of ?5° C. per minute; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 17, 2015
    Inventors: Florencio Garcia, Anant Achyut Setlur, James Edward Murphy, Srinivas Prasad Sista
  • Publication number: 20150361335
    Abstract: A process for synthesizing a manganese (Mn4+) doped phosphor includes milling particles of the a phosphor precursor of formula I, and contacting the milled particles with a fluorine-containing oxidizing agent at an elevated temperature Ax[MFy]:Mn4+??(I) wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 17, 2015
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Srinivas Prasad Sista
  • Publication number: 20150364659
    Abstract: A process for fabricating a LED lighting apparatus includes disposing a composite coating on a surface of a LED chip. The composite coating comprises a first composite layer having a manganese doped phosphor of formula I and a first binder, and a second composite layer comprising a second phosphor composition and a second binder. The first binder, the second binder or both include a poly(meth)acrylate. Ax[MFy]:Mn4+??(I) wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 17, 2015
    Inventors: Anant Achyut Setlur, Stanton Earl Weaver, Thomas Bert Gorczyca, Ashfaqul Islam Chowdhury, James Edward Murphy, Florencio Garcia
  • Publication number: 20150361337
    Abstract: A process for synthesizing a Mn4+ doped phosphor includes contacting a precursor of formula I, at an elevated temperature with a fluorine-containing oxidizing agent in gaseous form to form the color stable Mn4+ doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and amount of Mn ranges from about 0.9 wt % to about 4 wt %, based on total weight.
    Type: Application
    Filed: November 21, 2014
    Publication date: December 17, 2015
    Inventors: James Edward Murphy, Florencio Garcia, Ashfaqul Islam Chowdhury, Srinivas Prasad Sista, Anant Achyut Setlur
  • Publication number: 20150364655
    Abstract: A process for synthesizing a Mn4+ doped phosphor includes contacting a precursor of formula I, Ax(M1?z,Mnz)Fy??I at an elevated temperature with a fluorine-containing oxidizing agent in gaseous form to form the Mn4+ doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and 0.03?z?0.10.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 17, 2015
    Inventors: Anant Achyut Setlur, James Edward Murphy, Florencio Garcia, Ashfaqul Islam Chowdhury, Srinivas Prasad Sista
  • Patent number: 9210775
    Abstract: A method and system for storage of perishable items is provided. The system includes at least one enclosed compartment to store the perishable items. At least one of the walls of the enclosed compartment is detachable to allow movement of the perishable items in and out of the compartment. The system further includes a plurality of light emitting diodes (LEDs) that are disposed on one of the walls of the compartment. The LEDs include one or more blue LEDs that are coated with a layer of phosphor material. The LEDs are electrically coupled with a power source. The system further includes a control unit that is configured to control power supplied by the power source to the LEDs based on presence of the perishable items in the compartment.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: December 8, 2015
    Assignee: General Electric Company
    Inventors: James Edward Murphy, Anant Achyut Setlur
  • Publication number: 20150315461
    Abstract: A process for preparing a Mn4+ doped phosphor of formula I Ax[MFy]:Mn+4??I includes combining in an acidic solution, an A+ cation, an anion of formula MFy, and a Mnn+ source comprising a fluoromanganese compound, precipitating a Mnn+ containing phosphor precursor from the acidic solution, and contacting the Mnn+ containing phosphor precursor with a fluorine-containing oxidizing agent in gaseous form, at an elevated temperature, to form the Mn4+ doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and n is 2 or 3.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Robert Joseph Lyons, James Edward Murphy, Anant Achyut Setlur, Jr.
  • Publication number: 20150315462
    Abstract: A process for preparing a Mn4+ doped phosphor of formula I Ax[MFy]:Mn+4??I includes contacting a mixture of a compound of formula Ax[MFy], a compound of formula AX, and a Mn+n source comprising a fluoromanganese compound, with a fluorine-containing oxidizing agent in gaseous form, at an elevated temperature, to form the Mn4+ doped phosphor; wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; X is F, Cl, Br, I, HF2, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and n is 2, 3, or 4.
    Type: Application
    Filed: May 1, 2014
    Publication date: November 5, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: James Edward Murphy, Robert Joseph Lyons, Anant Achyut Setlur, JR.
  • Patent number: 9145517
    Abstract: A detector for detecting high-energy radiation is disclosed. The detector includes scintillating material with a garnet structure includes gadolinium, yttrium, cerium, gallium, and aluminum. The scintillating material is expressed as (Gd1?x?y?zYxAyCez)3+u(Ga1?m?nAlmDn)5?uO12:wFO, wherein A is lutetium, lanthanum, terbium, dysprosium, or a combination thereof; D is indium, scandium, or a combination thereof; F is a divalent ion; 0?x<0.2, 0<y<0.5, 0.001<z<0.05, 0<u<0.1, 0?n<0.2, 0.3<m<0.6, and 10 ppm?w?300 ppm; and y/x>1.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: September 29, 2015
    Assignee: General Electric Company
    Inventors: Haochuan Jiang, Anant Achyut Setlur, Robert Joseph Lyons, Kevin Alan David, James Edward Murphy
  • Publication number: 20150123153
    Abstract: A process for fabricating an LED lighting apparatus comprising a color stable Mn4+ doped phosphor of formula I includes forming on a surface of an LED chip a polymer composite layer comprising a first and a second population of particles of the phosphor of formula I having a graded composition varying in manganese concentration across a thickness thereof; Ax(M,Mn)Fy??(I) wherein A is Li, Na, K, Rb, Cs, NR4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; and y is 5, 6 or 7. The first population of particles has a lower manganese concentration than the second population of particles, and the manganese concentration in the polymer composite layer ranges from a minimum value in a region of the polymer composite layer proximate to the LED chip to a maximum value in a region opposite to the LED chip.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 7, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Anant Achyut Setlur, James Edward Murphy, Florencio Garcia
  • Publication number: 20150092912
    Abstract: Systems and method for filtering emissions from scintillators are provided. One system includes a scintillator having a scintillator material portion formed from a base scintillator material. The scintillator also includes a photodetector and a filter portion, The filter portion includes a material blocking near-infrared (IR) emissions. The filter portion is disposed on a surface of one of the scintillator material portion or the photodetector, and wherein the scintillator material portion, the photodetector, and the filter portion are coupled together. The filter portion blocks the near-IR emissions from impinging on the photodetector.
    Type: Application
    Filed: November 6, 2013
    Publication date: April 2, 2015
    Applicant: General Electric Company
    Inventors: Haochuan Jiang, Anant Achyut Setlur, Robert Joseph Lyons, Kevin Alan David, James Edward Murphy, Vladimir Lobastov
  • Patent number: 8906724
    Abstract: A process for synthesizing a color stable Mn4+ doped phosphor includes contacting a precursor of formula I, in gaseous form at an elevated temperature with a fluorine-containing oxidizing agent to form the color stable Mn4+ doped phosphor Ax[MFy]:Mn4+??I wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; and y is 5, 6 or 7.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: December 9, 2014
    Assignee: General Electric Company
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar
  • Publication number: 20140327026
    Abstract: A process for synthesizing a color stable Mn4+ doped phosphor includes contacting a precursor of formula I, in gaseous form at an elevated temperature with a fluorine-containing oxidizing agent to form the color stable Mn4+ doped phosphor Ax[MFy]:Mn4+ wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; and y is 5, 6 or 7.
    Type: Application
    Filed: June 23, 2014
    Publication date: November 6, 2014
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar
  • Publication number: 20140264418
    Abstract: A process for synthesizing a color stable Mn4+ doped phosphor includes contacting a precursor of formula I, in gaseous form at an elevated temperature with a fluorine-containing oxidizing agent to form the color stable Mn4+ doped phosphor Ax[MFy]:Mn4+??I wherein A is Li, Na, K, Rb, Cs, NR4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; and y is 5, 6 or 7.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar
  • Publication number: 20140268655
    Abstract: A color stable Mn4+ doped phosphor of formula I, Ax[MFy]:Mn4+??I wherein A is Li, Na, K, Rb, Cs, or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Hf, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; x is the absolute value of the charge of the [MFy] ion; y is 5, 6 or 7; and wherein % intensity loss of the phosphor after exposure to light flux of at least 80 w/cm2 at a temperature of at least 50° C. for at least 21 hours is ?4%.
    Type: Application
    Filed: May 23, 2014
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: James Edward Murphy, Anant Achyut Setlur, Florencio Garcia, Robert Joseph Lyons, Ashfaqul Islam Chowdhury, Nagaveni Karkada, Prasanth Kumar Nammalwar