Patents by Inventor Anatoliy N. Sokolov
Anatoliy N. Sokolov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11367835Abstract: The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer, comprising one or more triaryl aminium radical cations having the structure (S1).Type: GrantFiled: June 26, 2017Date of Patent: June 21, 2022Assignees: Dow Global Technologies LLC, Rohm and Haas Electronic Materials LLCInventors: Anatoliy N. Sokolov, Brian Goodfellow, Robert David Grigg, Liam P. Spencer, John W. Kramer, David D. Devore, Sukrit Mukhopadhyay, Peter Trefonas, III
-
Publication number: 20220069225Abstract: The present invention relates to a polymeric charge transfer layer comprising a polymer. The polymer comprises as polymerized units, Monomer A, Monomer B, and Monomer C crosslinking agent. The present invention further relates to an organic electronic device especially an organic light emitting device containing the polymeric charge transfer layer.Type: ApplicationFiled: October 27, 2015Publication date: March 3, 2022Inventors: Liam P. Spencer, Chun Liu, Minrong Zhu, Nolan T. McDougal, Shaoguang Feng, Peter Trefonas, III, David D. Devore, Zhengming Tang, Jiansheng Feng, Anatoliy N. Sokolov
-
Patent number: 10818860Abstract: The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer; and the polymer comprises, as polymerized units, at least one or more monomers having a first monomer structure comprising a) a polymerizable group, b) an electroactive group with formula NAr1Ar2Ar3 wherein Ar1, Ar2 and Ar3 independently are C6-C50 aromatic substituents, and (c) a linker group connecting the polymerizable group and the electroactive group.Type: GrantFiled: June 26, 2017Date of Patent: October 27, 2020Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLCInventors: Anatoliy N Sokolov, Brian Goodfellow, Robert David Grigg, Liam P Spencer, John W Kramer, David D Devore, Sukrit Mukhopadhyay, Peter Trefonas, III
-
Publication number: 20200185604Abstract: Provided is an organic light-emitting diode comprising a substrate, an anode layer, optionally one or more hole injection layers, one or more hole transport layers, optionally one or more electron blocking layers, an emitting layer, optionally one or more hole blocking layers, optionally one or more electron transport layers, an electron injection layer, and a cathode, wherein either the hole injection layer, or the hole transport layer, or both of the hole injection layer and the hole transport layer, or a layer that functions as both a hole injection layer and a hole transport layer, comprises a polymer that comprises one or more triaryl aminium radical cations having the structure (S1) wherein each of R11, R12, R13, R14, R15, R21, R22, R23, R24, R25, R31, R32, R33, R34, and R35 is independently selected from the group consisting of hydrogen, deuterium halogens, amine groups, hydroxyl groups, sulfonate groups, nitro groups, and organic groups, wherein two or more of R11, R12, R13, R14, R15, R21, R22, R23, RType: ApplicationFiled: October 20, 2017Publication date: June 11, 2020Inventors: Robert David Grigg, Liam P. Spencer, John W. Kramer, David D. Devore, Brian Goodfellow, Chun Liu, Sukrit Mukhopadhyay, Thomas H. Peterson, William H. H. Woodward, Anatoliy N. Sokolov
-
Publication number: 20200052218Abstract: The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer, comprising one or more triaryl aminium radical cations having the structure (S1).Type: ApplicationFiled: June 26, 2017Publication date: February 13, 2020Inventors: Anatoliy N. SOKOLOV, Brian GOODFELLOW, Robert David GRIGG, Liam P. SPENCER, John W. KRAMER, David D. DEVORE, Sukrit MUKHOPADHYAY, Peter TREFONAS, III
-
Publication number: 20190334106Abstract: The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer; and the polymer comprises, as polymerized units, at least one or more monomers having a first monomer structure comprising a) a polymerizable group, b) an electroactive group with formula NAr1Ar2Ar3 wherein Ar1, Ar2 and Ar3 independently are C6-C50 aromatic substituents, and (c) a linker group connecting the polymerizable group and the electroactive group.Type: ApplicationFiled: June 26, 2017Publication date: October 31, 2019Inventors: Anatoliy N SOKOLOV, Brian GOODFELLOW, Robert David GRIGG, Liam P SPENCER, John W KRAMER, David D DEVORE, Sukrit MUKHOPADHYAY, Peter TREFONAS, III
-
Publication number: 20190252618Abstract: Provided is an organic light-emitting diode comprising a substrate, an anode layer, optionally one or more hole injection layers, one or more hole transport layers, optionally one or more electron blocking layers, an emitting layer, optionally one or more hole blocking layers, optionally one or more electron transport layers, an electron injection layer, and a cathode, wherein either the hole injection layer, or the hole transport layer, or both of the hole injection layer and the hole transport layer, or layer that functions as both a hole injection layer and a hole transport layer, comprises a polymer that comprises one or more triaryl aminium radical cations having the structure (S1) wherein each of R11, R12, R13, R14, R15, R21, R22, R23, R24, R25, R31, R32, R33, R34, and R35 is independently selected from the group consisting of hydrogen, deuterium halogens, amine groups, hydroxyl groups, sulfonate groups, nitro groups, and organic groups, wherein two or more of R11, R12, R13, R14, R15, R21, R22, R23, R24Type: ApplicationFiled: October 20, 2017Publication date: August 15, 2019Inventors: Robert David Grigg, Liam P. Spencer, John W. Kramer, David D. Devore, Brian Goodfellow, Chun Liu, Sukrit Mukhopadhyay, Thomas H. Peterson, William H. H. Woodward, Anatoliy N. Sokolov
-
Publication number: 20190207115Abstract: A polymer which has Mn at least 4,000 and comprises polymerized units of a compound of formula NAr1A2A3, wherein Ar1, Ar2 and Ar3 independently are C6-C40 aromatic substituents; Ar1, Ar2 and Ar3 collectively contain no more than one nitrogen atom and at least one of Ar1, Ar2 and Ar3 contains a vinyl group attached to an aromatic ring.Type: ApplicationFiled: June 28, 2016Publication date: July 4, 2019Inventors: Robert David GRIGG, Liam P. Spencer, John W. Kramer, Chun Liu, David D. Devore, Shaoguang Feng, Jichang Feng, Minrong Zhu, Yang Li, Sukrit Mukhopadhyay, Anatoliy N. Sokolov, Matthew S. Remy, Peter Trefonas, Bethany Neilson
-
Publication number: 20190198765Abstract: A single liquid phase formulation useful for producing an organic charge transporting film. The formulation contains: (a) a polymer having Mn at least 4,000 and comprising polymerized units of a compound of formula NAr1Ar2Ar3, wherein Ar1, Ar2 and Ar3 independently are C6-C50 aromatic substituents and at least one of Ar1, Ar2 and Ar3 contains a vinyl group attached to an aromatic ring; provided that said compound contains no arylmethoxy linkages; (b) an acid catalyst which is is an organic Bronsted acid with pKa?4; a Lewis acid comprising a positive aromatic ion and an anion which is (i) a tetraaryl borate having the formula (I) wherein R represents zero to five non-hydrogen substituents selected from D, F and CF3, (ii) BF4?, (iii) PF6?, (iv) SbF6?, (v) AsF6? or (vi) ClO4?; or a thermal acid generator.Type: ApplicationFiled: June 28, 2016Publication date: June 27, 2019Inventors: David D. DEVORE, Yoo Jin DOH, Shaoguang FENG, David D. GRIGG, Yang LI, Chun LIU, Sukrit MUKHOPADHYAY, Hong-Yeop NA, Matthew S. REMY, Liam P. SPENCER, Anatoliy N. SOKOLOV, Peter TREFONAS, III, Minrong ZHU, Ashely INMAN, John W. KRAMER
-
Publication number: 20190148664Abstract: A polymer which has Mn at least 4,000 and comprises polymerized units of a compound of formula NAr1Ar2Ar3, wherein Ar1, Ar2 and Ar3 independently are C6-C50 aromatic substituents; Ar1, Ar2 and Ar3 collectively contain at least two nitrogen atoms and at least 9 aromatic rings; and at least one of Ar1, Ar2 and Ar3 contains a vinyl group attached to an aromatic ring.Type: ApplicationFiled: June 28, 2016Publication date: May 16, 2019Inventors: David Robert GRIGG, Liam P. SPENCER, John W. KRAMER, Chun LIU, David D. DEVORE, Shaoguang FENG, Jichang FENG, Minrong ZHU, Yang LI, Sukrit MUKHOPADHYAY, Anatoliy N. SOKOLOV, Matthew S. REMY, Peter TREFONAS, Bethany NEILSON
-
Patent number: 10228619Abstract: Disclosed herein is an article comprising a substrate; a first region having a first brush polymer chemically bonded to the substrate; where the first brush polymer comprises repeat units of a first ethylenically unsaturated monomer and a second ethylenically unsaturated monomer; where the first ethylenically unsaturated monomer comprises a first electroactive moiety and where the second ethylenically unsaturated monomer comprises a second electroactive moiety that is different from the first electroactive moiety; where at least one of the first electroactive moiety or the second electroactive moiety is an emitter moiety and where the repeat units of the first ethylenically unsaturated monomer are covalently bonded to repeat units of the second ethylenically unsaturated monomer.Type: GrantFiled: March 31, 2017Date of Patent: March 12, 2019Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, ROHM AND HAAS ELECTRONIC MATERIALS LLC, DOW GLOBAL TECHNOLOGIES LLCInventors: Craig J. Hawker, Zachariah Allen Page, Peter Trefonas, III, Anatoliy N. Sokolov, John Kramer, David S. Laitar, Sukrit Mukhopadhyay, Benjaporn Narupai, Christian Wilhelm Pester
-
Patent number: 10211400Abstract: Disclosed herein is a device comprising a substrate; where the substrate comprises a plurality of brush polymers that are covalently or ionically bonded to the substrate; where at least a portion of the brush polymers comprise a covalently bonded emitter moiety.Type: GrantFiled: March 31, 2017Date of Patent: February 19, 2019Assignees: DOW GLOBAL TECHNOLOGIES LLC, ROHM AND HAAS ELECTRONIC MATERIALS LLC, THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Craig J. Hawker, Zachariah Allen Page, Peter Trefonas, III, Anatoliy N. Sokolov, John Kramer, David S. Laitar, Sukrit Mukhopadhyay, Benjaporn Narupai, Christian Wilhelm Pester
-
Publication number: 20180340033Abstract: Disclosed herein is a composition comprising a co-continuous interpenetrating network of an organic polymer and a electroactive moiety; where the organic polymer is operative to depolymerize at a temperature of 50 to 500° C. and to repolymerize on a surface in the presence of the electroactive moiety; and where the electroactive moiety is an organic semiconductor that does not react with a repolymerized polymer. Disclosed herein too is a method comprising co-evaporating a polymeric precursor and an electroactive moiety onto a substrate; condensing the polymeric precursor and an electroactive moiety on the substrate; and polymerizing the polymeric precursor to form a co-continuous interpenetrating network of an organic polymer and an electroactive moiety; where the electroactive moiety is defined as a chemical functional group which is capable of transporting an electrical charge.Type: ApplicationFiled: May 24, 2018Publication date: November 29, 2018Inventors: Jared Scott Price, Noel Christopher Giebink, Anatoliy N. Sokolov, Sukrit Mukhopadhyay
-
Publication number: 20180287065Abstract: Disclosed herein is a device comprising a substrate; where the substrate comprises a plurality of brush polymers that are covalently or ionically bonded to the substrate; where at least a portion of the brush polymers comprise a covalently bonded emitter moiety.Type: ApplicationFiled: March 31, 2017Publication date: October 4, 2018Inventors: Craig J. Hawker, Zachariah Allen Page, Peter Trefonas, III, Anatoliy N. Sokolov, John Kramer, David S. Laitar, Sukrit Mukhopadhyay, Benjaporn Narupai, Christian Wilhelm Pester
-
Publication number: 20180284608Abstract: Disclosed herein is an article comprising a substrate; a first region having a first brush polymer chemically bonded to the substrate; where the first brush polymer comprises repeat units of a first ethylenically unsaturated monomer and a second ethylenically unsaturated monomer; where the first ethylenically unsaturated monomer comprises a first electroactive moiety and where the second ethylenically unsaturated monomer comprises a second electroactive moiety that is different from the first electroactive moiety; where at least one of the first electroactive moiety or the second electroactive moiety is an emitter moiety and where the repeat units of the first ethylenically unsaturated monomer are covalently bonded to repeat units of the second ethylenically unsaturated monomer.Type: ApplicationFiled: March 31, 2017Publication date: October 4, 2018Inventors: Craig J. Hawker, Zachariah Allen Page, Peter Trefonas, III, Anatoliy N. Sokolov, John Kramer, David S. Laitar, Sukrit Mukhopadhyay, Benjaporn Narupai, Christian Wilhelm Pester
-
Publication number: 20160322224Abstract: The present invention provides methods for using single source organometallic precursors in the fabrication of polycrystalline Group III-Group V compounds, preferably semiconductor compounds. The present invention teaches how to select organometallic ligands in single-source precursors in order to control the stoichiometry of the corresponding Group III-Group V compounds derived from these precursors. The present invention further teaches how to anneal precursors in the presence of one or more flux agents in order to increase the crystalline grain size of polycrystalline Group III-Group V compounds derived from organometallic precursors. This helps to provide Group III-Group V semiconductors with better electronic properties. The flux layer also helps to control the stoichiometry of the Group III-Group V compounds.Type: ApplicationFiled: December 10, 2014Publication date: November 3, 2016Inventors: Robert J. WRIGHT, Anatoliy N. SOKOLOV, George L. ATHENS, Peter N. NICKIAS, James C. STEVENS, Liam L. SPENCER, Bruce B. GERHART, Anna M. PICKENS
-
Patent number: 8957406Abstract: Various methods and apparatuses involve the provision of graphitic material. As consistent with one or more aspects herein, an organic material template is used to restrict growth, in a width dimension, of graphitic material grown from the organic material template. Graphitic material is therein provided, having a set of characteristics including electrical behavior and shape, with a representative width defined by the width dimension, based on the organic material template.Type: GrantFiled: August 30, 2013Date of Patent: February 17, 2015Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Anatoliy N. Sokolov, Fung Ling Yap, Zhenan Bao, Nan Liu
-
Publication number: 20140103297Abstract: Various methods and apparatuses involve the provision of graphitic material. As consistent with one or more aspects herein, an organic material template is used to restrict growth, in a width dimension, of graphitic material grown from the organic material template. Graphitic material is therein provided, having a set of characteristics including electrical behavior and shape, with a representative width defined by the width dimension, based on the organic material template.Type: ApplicationFiled: August 30, 2013Publication date: April 17, 2014Applicant: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Anatoliy N. Sokolov, Fung Ling Yap, Zhenan Bao, Nan Liu
-
Patent number: 8328933Abstract: The invention provides a method to enforce face-to-face stacking of organic semiconductors in the solid state that employs semiconductor co-crystal formers (SCCFs), to align semiconductor building blocks (SBBs). Single-crystal X-ray analysis reveals ?-orbital overlap optimal for organic semiconductor device applications.Type: GrantFiled: December 9, 2008Date of Patent: December 11, 2012Assignee: University of Iowa Research FoundationInventors: Leonard R. MacGillivray, Anatoliy N. Sokolov
-
Publication number: 20100148154Abstract: The invention provides a method to enforce face-to-face stacking of organic semiconductors in the solid state that employs semiconductor co-crystal formers (SCCFs), to align semiconductor building blocks (SBBs). Single-crystal X-ray analysis reveals ?-orbital overlap optimal for organic semiconductor device applications.Type: ApplicationFiled: December 9, 2008Publication date: June 17, 2010Applicant: UNIVERSITY OF IOWA RESEARCH FOUNDATIONInventors: Leonard R. MacGillivray, Anatoliy N. Sokolov