Patents by Inventor André Mercanzini

André Mercanzini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190351219
    Abstract: Described herein are microelectrode array devices, and methods of fabrication and use of the same, to provide highly localized and efficient electrical stimulation of a neurological target. The device includes multiple microelectrode elements arranged along an elongated probe shaft. The microelectrode elements are dimensioned and shaped so as to target individual neurons, groups of neurons, and neural tissue as may be located in an animal nervous system, such as deep within a human brain. Beneficially, the neurological probe can be used to facilitate location of the neurological target and remain implanted for long-term monitoring and/or stimulation.
    Type: Application
    Filed: August 5, 2019
    Publication date: November 21, 2019
    Inventors: Andre MERCANZINI, Philippe RENAUD
  • Patent number: 10441779
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: October 15, 2019
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 10406350
    Abstract: Described herein are microelectrode array devices, and methods of fabrication and use of the same, to provide highly localized and efficient electrical stimulation of a neurological target. The device includes multiple microelectrode elements arranged along an elongated probe shaft. The microelectrode elements are dimensioned and shaped so as to target individual neurons, groups of neurons, and neural tissue as may be located in an animal nervous system, such as deep within a human brain. Beneficially, the neurological probe can be used to facilitate location of the neurological target and remain implanted for long-term monitoring and/or stimulation.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: September 10, 2019
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
    Inventors: Andre Mercanzini, Philippe Renaud
  • Publication number: 20190269907
    Abstract: The present disclosure discusses a nerve cuff that includes a thin-film elastic mesh with an integrated array of electrodes. The nerve cuff can wrap around a human carotid artery or other tissue to stimulate the autonomic nervous system. The nerve cuff can include a housing that secures the mesh to the carotid artery or other tissue.
    Type: Application
    Filed: February 28, 2019
    Publication date: September 5, 2019
    Inventors: Andre Mercanzini, Zbynek Struzka, Jason Jinyu Ruan
  • Publication number: 20190269906
    Abstract: The present disclosure describes an implantable lead device that includes an internal support comb. The support comb can include one or more faces that enable the alignment, routing, and holding of the lead device's internal wires. The support comb can enable the interconnection of the wires with to the microelectrode film that includes the lead device's electrodes.
    Type: Application
    Filed: March 2, 2018
    Publication date: September 5, 2019
    Inventors: Andre Mercanzini, Zbynek Struzka, Jason Jinyu Ruan, Pascal Harbi, Alain Jordan
  • Publication number: 20190232050
    Abstract: Described herein are microelectrode devices to provide localized neural recording or neural stimulation to a neurological target. The device includes a plurality of electrodes disposed along the shafts of deployable flexible pins. The deployable flexible pins are enclosed within an elongated probe shaft and can be expanded from their enclosure. Additionally, a specifically manufactured outer housing can be coupled to at least a portion of the elongated probe shaft. During deployment of the flexible pins the outer housing of the microelectrode device reduces friction between the flexible pins and the probe shaft and reduces delamination of the flexible pins during deployment.
    Type: Application
    Filed: April 9, 2019
    Publication date: August 1, 2019
    Inventors: Marc Boers, Andre Mercanzini, Jean-Michel Dougoud, Alexandre Michalis, Khoa Nguyen
  • Publication number: 20190134400
    Abstract: A preferred frequency is identified, being usable to stimulate a neurological target within a mammalian body using at least one microelectrode positioned at or near the target. To establish efficient and effective stimulation, an impedance analyzer is provided for measuring electrical impedance values indicative of a microelectrode-tissue interface across a range of different frequencies. A preferred one of the measured electrical impedance values is identified as being closest to a pure resistance. The neurological target can then be stimulated at or near the frequency associated with the preferred impedance value (peak resistance frequency), thereby promoting desirable traits, such as optimum charge transfer, minimum signal distortion, increased stimulation efficiency, and prevention of microelectrode corrosion. The peak resistance frequency can be used to determine an preferred pulse shape.
    Type: Application
    Filed: December 31, 2018
    Publication date: May 9, 2019
    Inventors: André MERCANZINI, Philippe RENAUD
  • Patent number: 10201707
    Abstract: Techniques using electrical stimulation for treating an Autoimmune Disease by means of an implantable pulse generator and at least one electrode. An electrode lead is surgically implanted in a region of the insular cortex to deliver electrical stimulation. The at least one electrode lead and implantable pulse generator contain features that allow the electrical stimulation to be directed to specific volumes of the insular cortex, and ensure that non-therapeutic volumes do not receive electrical stimulation.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: February 12, 2019
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: Ingo Hartig, Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 10166392
    Abstract: A preferred frequency is identified, being usable to stimulate a neurological target within a mammalian body using at least one microelectrode positioned at or near the target. To establish efficient and effective stimulation, an impedance analyzer is provided for measuring electrical impedance values indicative of a microelectrode-tissue interface across a range of different frequencies. A preferred one of the measured electrical impedance values is identified as being closest to a pure resistance. The neurological target can then be stimulated at or near the frequency associated with the preferred impedance value (peak resistance frequency), thereby promoting desirable traits, such as optimum charge transfer, minimum signal distortion, increased stimulation efficiency, and prevention of microelectrode corrosion. The peak resistance frequency can be used to determine an preferred pulse shape.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: January 1, 2019
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
    Inventors: André Mercanzini, Philippe Renaud
  • Publication number: 20180296825
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 18, 2018
    Inventors: Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 10065031
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: September 4, 2018
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 10004895
    Abstract: The present disclosure discusses a system and methods for a deep brain stimulation lead. More particularly, the disclosure discusses a stimulation lead that includes one or more silicon based barrier layers within a MEMS film. The silicon based barrier layers can improve device reliability and durability. The silicon based barrier layers can also improve adhesion between the layers of the MEMS film.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 26, 2018
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Publication number: 20180161574
    Abstract: Techniques using electrical stimulation for treating an Autoimmune Disease by means of an implantable pulse generator and at least one electrode. An electrode lead is surgically implanted in a region of the insular cortex to deliver electrical stimulation. The at least one electrode lead and implantable pulse generator contain features that allow the electrical stimulation to be directed to specific volumes of the insular cortex, and ensure that non-therapeutic volumes do not receive electrical stimulation.
    Type: Application
    Filed: January 23, 2018
    Publication date: June 14, 2018
    Inventors: Ingo Hartig, Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 9925376
    Abstract: Techniques using electrical stimulation for treating an Autoimmune Disease by means of an implantable pulse generator and at least one electrode. An electrode lead is surgically implanted in a region of the insular cortex to deliver electrical stimulation. The at least one electrode lead and implantable pulse generator contain features that allow the electrical stimulation to be directed to specific volumes of the insular cortex, and ensure that non-therapeutic volumes do not receive electrical stimulation.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: March 27, 2018
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventors: Ingo Hartig, Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Patent number: 9889304
    Abstract: The present disclosure describes a medical device to provide neurostimulation therapy to a patient's brain. The device can be surgically implanted and can remain in the patient until end of life. The present disclosure also describes accessories which guide the implantation of the device, and the components that form a leadless stimulator implantation kit.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: February 13, 2018
    Assignee: ALEVA NEUROTHERAPEUTICS
    Inventor: Andre Mercanzini
  • Publication number: 20170143982
    Abstract: The present disclosure describes a medical device to provide neurostimulation therapy to a patient's brain. The device can be surgically implanted and can remain in the patient until end of life. The present disclosure also describes accessories which guide the implantation of the device, and the components that form a leadless stimulator implantation kit.
    Type: Application
    Filed: February 7, 2017
    Publication date: May 25, 2017
    Inventor: Andre Mercanzini
  • Publication number: 20170136238
    Abstract: Techniques using electrical stimulation for treating an Autoimmune Disease by means of an implantable pulse generator and at least one electrode. An electrode lead is surgically implanted in a region of the insular cortex to deliver electrical stimulation. The at least one electrode lead and implantable pulse generator contain features that allow the electrical stimulation to be directed to specific volumes of the insular cortex, and ensure that non-therapeutic volumes do not receive electrical stimulation.
    Type: Application
    Filed: February 1, 2017
    Publication date: May 18, 2017
    Inventors: Ingo Hartig, Andre Mercanzini, Alain Jordan, Alexandre Michalis, Marc Boers, Alain Dransart
  • Publication number: 20170105641
    Abstract: Described herein are microelectrode devices to provide localized neural recording or neural stimulation to a neurological target. The device includes a plurality of electrodes disposed along the shafts of deployable flexible pins. The deployable flexible pins are enclosed within an elongated probe shaft, and can be expanded from their enclosure. Additionally, a specifically manufactured outer housing can be coupled to at least a portion of the elongated probe shaft. During deployment of the flexible pins the outer housing of the microelectrode device reduces friction between the flexible pins and the probe shaft and reduces delamination of the flexible pins during deployment.
    Type: Application
    Filed: May 15, 2015
    Publication date: April 20, 2017
    Inventors: Marc BOERS, Andre MERCANZINI, Jean-Michel DOUGOUD, Alexandre MICHALIS
  • Patent number: 9604055
    Abstract: Described herein are microelectrode array devices, and methods of fabrication and use of the same, to provide highly localized and efficient electrical stimulation of a neurological target. The device includes multiple microelectrode elements arranged along an supportive backing layer. The microelectrode elements are dimensioned and shaped so as to target individual neurons, groups of neurons, and neural tissue as may be located in an animal nervous system, such as along a region of a cortex of a human brain. Beneficially, the neurological probe can be used to facilitate location of the neurological target and remain implanted for long-term monitoring and/or stimulation.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: March 28, 2017
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
    Inventors: André Mercanzini, Philippe Renaud
  • Publication number: 20170080210
    Abstract: Described herein are microelectrode array devices, and methods of fabrication, assembly and use of the same, to provide highly localized neural recording and/or neural stimulation to a neurological target. The device includes multiple microelectrode elements arranged protruding shafts. The protruding shafts are enclosed within an elongated probe shaft, and can be expanded from their enclosure. The microelectrode elements, and elongated probe shafts, are dimensioned in order to target small volumes of neurons located within the nervous system, such as in the deep brain region. Beneficially, the probe can be used to quickly identify the location of a neurological target, and remain implanted for long-term monitoring and/or stimulation.
    Type: Application
    Filed: December 5, 2016
    Publication date: March 23, 2017
    Applicant: Ecole Polytechnique Federale de Lausanne
    Inventors: André MERCANZINI, Philippe RENAUD, Claudio POLLO