Patents by Inventor Andrea Bajo

Andrea Bajo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200138534
    Abstract: A surgical robotic system is disclosed to include an operating table, a plurality of robotic arms and surgical instruments, a user console, and a control tower. The plurality of robotic arms are mounted on the operating table and can be stowed folded under the table for storage. The user console has one or more user interface devices, which function as master devices to control the plurality of surgical instruments.
    Type: Application
    Filed: October 16, 2019
    Publication date: May 7, 2020
    Applicant: Verb Surgical Inc.
    Inventors: Pablo E. Garcia Kilroy, Karen S. Koenig, Andrea Bajo, Robert T. Wiggers, Joan Savall, Eric M. Johnson
  • Patent number: 10500002
    Abstract: A rotatable wrist connecting a gripper tool to the distal end of a positioning shaft. The rotatable wrist includes a wrist hub that is non-rotatably connected to the distal end of the shaft. A wrist capstan is rotatably connected to the wrist hub and non-rotatably connected to an actuatable device (e.g., a gripper). A flexible wire loop extends through the wrist hub and partially contacts the wrist capstan. Linear movement of the flexible wire loop through the shaft causes rotation of the wrist capstan due to friction between the flexible wire loop and the wrist capstan. The wrist also supports selective detachability and control of roll, pitch and roll, pitch yaw and roll according to different embodiments.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: December 10, 2019
    Assignee: Vanderbilt University
    Inventors: Nabil Simaan, Roger E. Goldman, Andrea Bajo
  • Publication number: 20190320874
    Abstract: A first input coupling and a second input coupling are coupled to rotatably drive an output coupling at the same time. In one embodiment, the output coupling rotates a robotic surgery endoscope about a longitudinal axis of the output coupling. A first motor drives the first input coupling while being assisted by a second motor that is driving the second input coupling. A first compensator produces a first motor input based on a position error and in accordance with a position control law, and a second compensator produces a second motor input based on the position error and in accordance with an impedance control law. In another embodiment, the second compensator receives a measured torque of the first motor. Other embodiments are also described and claimed.
    Type: Application
    Filed: April 20, 2018
    Publication date: October 24, 2019
    Inventors: Haoran Yu, Renbin Zhou, Sina Nia Kosari, Andrea Bajo
  • Patent number: 10300599
    Abstract: Methods and systems are described for controlling movement and an applied force at the tip of the continuum robot that includes a plurality of independently controlled segments along its length. An estimated force at the tip of the continuum robot is determined based on measurements of loads and positions of each segment. A reference position command and a force command are received from a user interface. The reference position command indicates a desired movement for the distal end of the continuum robot and the force command indicates a desired force to be applied by the tip of the continuum robot to a tissue surface. The position of the continuum robot is adjusted to cause the tip of the continuum robot to apply the desired force to the tissue surface based on the estimated force at the tip of the continuum robot, the reference position command, and the force command.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: May 28, 2019
    Assignee: Vanderbilt University
    Inventors: Nabil Simaan, Andrea Bajo, James L. Netterville, C. Gaelyn Garrett, Roger E. Goldman
  • Publication number: 20190150904
    Abstract: An articulated tool positioning apparatus comprising a base member, an intermediate member, an end member and a first tool holder arranged in succession, each of the base member, intermediate member, end member and tool holder having a respective central opening. A first plurality of coupled guides id positioned between the base member and the intermediate member and a second plurality of coupled guides is positioned between the intermediate member and the end member. A third plurality of coupled guides is diposed between the end member and the tool holder. The base member, intermediate member, end member, first tool holder and first second and third pluralities of coupled guides all have a central opening and guide openings or securing points for securing pluralities of flexible control links to the base member or to an object separated from the base member.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 23, 2019
    Inventors: Rene Robert, David Allen Zitnick, Peter John Kenneth Cameron, Leonard M. Faria, Andrea Bajo
  • Patent number: 10278683
    Abstract: An articulated tool positioning apparatus comprising a base member, an intermediate member, an end member and a first tool holder arranged in succession, each of the base member, intermediate member, end member and tool holder having a respective central opening. A first plurality of coupled guides id positioned between the base member and the intermediate member and a second plurality of coupled guides is positioned between the intermediate member and the end member. A third plurality of coupled guides is diposed between the end member and the tool holder. The base member, intermediate member, end member, first tool holder and first second and third pluralities of coupled guides all have a central opening and guide openings or securing points for securing pluralities of flexible control links to the base member or to an object separated from the base member.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: May 7, 2019
    Assignee: Titan Medical Inc.
    Inventors: Rene Robert, David Allen Zitnick, Peter John Kenneth Cameron, Leonard M. Faria, Andrea Bajo
  • Publication number: 20190000580
    Abstract: A robotic surgical system may include an actuator including a plurality of linearly displaceable drive members, where at least one drive member actuates at least one degree of freedom of a surgical instrument, and a sterile adapter interposed between the actuator and the surgical instrument. The sterile adapter includes a flexible barrier and a plurality of extensible covers integrally formed with the flexible barrier, and the plurality of extensible covers are arranged to receive the plurality of drive members. In some variations, the system may include an interlocked arrangement coupling the actuator and the surgical instrument across the sterile adapter, the interlocked arrangement urging the actuator and the surgical instrument together when the actuator actuates the at least one degree of freedom of the surgical instrument.
    Type: Application
    Filed: June 27, 2018
    Publication date: January 3, 2019
    Inventors: Charles J. SCHEIB, Andrea BAJO, Kent M. ANDERSON
  • Publication number: 20180168752
    Abstract: Generally, a sterile adapter for use in robotic surgery may include a frame configured to be interposed between a tool driver and a surgical tool, a plate assembly coupled to the frame, and at least one rotatable coupler supported by the plate assembly and configured to communicate torque from an output drive of the tool driver to an input drive of the surgical tool.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 21, 2018
    Inventors: Charles J. SCHEIB, Jaime HERNANDEZ, Andrea BAJO
  • Publication number: 20180168763
    Abstract: Generally, a system for use in a robotic surgical system may be used to determine an attachment state between a tool driver, sterile adapter, and surgical tool of the system. The system may include sensors used to generate attachment data corresponding to the attachment state. The attachment state may be used to control operation of the tool driver and surgical tool. In some variations, one or more of the attachment states may be visually output to an operator using one or more of the tool driver, sterile adapter, and surgical tool. In some variations, the tool driver and surgical tool may include electronic communication devices configured to be in close proximity when the surgical tool is attached to the sterile adapter and tool driver.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 21, 2018
    Inventors: Charles J. SCHEIB, Jaime HERNANDEZ, Andrea BAJO
  • Publication number: 20180168762
    Abstract: Generally, a system for use in a robotic surgical system may be used to determine an attachment state between a tool driver, sterile adapter, and surgical tool of the system. The system may include sensors used to generate attachment data corresponding to the attachment state. The attachment state may be used to control operation of the tool driver and surgical tool. In some variations, one or more of the attachment states may be visually output to an operator using one or more of the tool driver, sterile adapter, and surgical tool. In some variations, the tool driver and surgical tool may include electronic communication devices configured to be in close proximity when the surgical tool is attached to the sterile adapter and tool driver.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 21, 2018
    Inventors: Charles J. SCHEIB, Matthew Colin VARGAS, Andrea BAJO, Jaime HERNANDEZ, Koray SAHIN
  • Publication number: 20180168761
    Abstract: Generally, a system for use in a robotic surgical system may be used to determine an attachment state between a tool driver, sterile adapter, and surgical tool of the system. The system may include sensors used to generate attachment data corresponding to the attachment state. The attachment state may be used to control operation of the tool driver and surgical tool. In some variations, one or more of the attachment states may be visually output to an operator using one or more of the tool driver, sterile adapter, and surgical tool. In some variations, the tool driver and surgical tool may include electronic communication devices configured to be in close proximity when the surgical tool is attached to the sterile adapter and tool driver.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 21, 2018
    Inventors: Matthew Colin VARGAS, Charles J. SCHEIB, Andrea BAJO, Koray SAHIN, Jaime HERNANDEZ, Robert Elliott DeCOU
  • Publication number: 20180116738
    Abstract: A tool driver for use in robotic surgery includes a base configured to couple to a distal end of a robotic arm, and a tool carriage slidingly engaged with the base and configured to receive a surgical tool. In one variation, the tool carriage may include a plurality of linear axis drives configured to actuate one or more articulated movements of the surgical tool. In another variation, the tool carriage may include a plurality of rotary axis drives configured to actuate one or more articulated movements of the surgical tool. Various sensors, such as a capacitive load cell for measuring axial load, a position sensor for measuring linear position of the guide based on the rotational positions of gears in a gear transmission, and/or a capacitive torque sensor based on differential capacitance, may be included in the tool driver.
    Type: Application
    Filed: November 3, 2017
    Publication date: May 3, 2018
    Inventors: Andrea BAJO, Kent ANDERSON
  • Publication number: 20180116737
    Abstract: A tool driver for use in robotic surgery includes a base configured to couple to a distal end of a robotic arm, and a tool carriage slidingly engaged with the base and configured to receive a surgical tool. In one variation, the tool carriage may include a plurality of linear axis drives configured to actuate one or more articulated movements of the surgical tool. In another variation, the tool carriage may include a plurality of rotary axis drives configured to actuate one or more articulated movements of the surgical tool. Various sensors, such as a capacitive load cell for measuring axial load, a position sensor for measuring linear position of the guide based on the rotational positions of gears in a gear transmission, and/or a capacitive torque sensor based on differential capacitance, may be included in the tool driver.
    Type: Application
    Filed: November 3, 2017
    Publication date: May 3, 2018
    Inventors: Andrea BAJO, Jose Luis CORDOBA, Kent ANDERSON
  • Patent number: 9956042
    Abstract: Systems and methods are described for using a robotic system to perform procedures within a cavity using a virtual fixture. The robotic system includes a rigid central stem including an access channel positioned longitudinally along the rigid central stem and a dexterous arm at least partially positioned within the access channel of the central stem. The dexterous arm includes a plurality of individually adjustable segments. A control system receives a positioning command from a manipulator control indicative of a desired movement of a distal end of the dexterous arm. A virtual fixture is defined that is representative of the access channel of the rigid central stem. The position of the dexterous arm is adjusted such that the distal end of the dexterous arm performs the desired movement while the portion of the dexterous arm that is positioned within the first access channel is not moved beyond the defined virtual fixture.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: May 1, 2018
    Assignee: Vanderbilt University
    Inventors: Nabil Simaan, Andrea Bajo, Ryan B. Pickens, Stanley Duke Herrel
  • Publication number: 20170265950
    Abstract: A rotatable wrist connecting a gripper tool to the distal end of a positioning shaft. The rotatable wrist includes a wrist hub that is non-rotatably connected to the distal end of the shaft. A wrist capstan is rotatably connected to the wrist hub and non-rotatably connected to an actuatable device (e.g., a gripper). A flexible wire loop extends through the wrist hub and partially contacts the wrist capstan. Linear movement of the flexible wire loop through the shaft causes rotation of the wrist capstan due to friction between the flexible wire loop and the wrist capstan. The wrist also supports selective detachability and control of roll, pitch and roll, pitch yaw and roll according to different embodiments.
    Type: Application
    Filed: June 8, 2017
    Publication date: September 21, 2017
    Inventors: Nabil Simaan, Roger E. Goldman, Andrea Bajo
  • Publication number: 20170182659
    Abstract: Methods and systems are described for controlling movement and an applied force at the tip of the continuum robot that includes a plurality of independently controlled segments along its length. An estimated force at the tip of the continuum robot is determined based on measurements of loads and positions of each segment. A reference position command and a force command are received from a user interface. The reference position command indicates a desired movement for the distal end of the continuum robot and the force command indicates a desired force to be applied by the tip of the continuum robot to a tissue surface. The position of the continuum robot is adjusted to cause the tip of the continuum robot to apply the desired force to the tissue surface based on the estimated force at the tip of the continuum robot, the reference position command, and the force command.
    Type: Application
    Filed: January 6, 2017
    Publication date: June 29, 2017
    Inventors: Nabil Simaan, Andrea Bajo, James L. Netterville, C. Gaelyn Garrett, Roger E. Goldman
  • Patent number: 9687303
    Abstract: A rotatable wrist connecting a gripper tool to the distal end of a continuum robot shaft. The rotatable wrist includes a wrist hub that is non-rotatably connected to the distal end of the shaft. A wrist capstan is rotatably connected to the wrist hub and non-rotatably connected to the gripper. A flexible wire loop extends through the wrist hub and partially contacts the wrist capstan. Linear movement of the flexible wire loop through the shaft of the continuum robot causes rotation of the wrist capstan due to friction between the flexible wire loop and the wrist capstan. The wrist also supports selective detachability and control of roll, pitch and roll, pitch yaw and roll according to different embodiments.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: June 27, 2017
    Assignee: Vanderbilt University
    Inventors: Nabil Simaan, Roger E. Goldman, Andrea Bajo
  • Patent number: 9549720
    Abstract: A device for establishing an access channel to a target location is presented. The device includes a plurality of cylindrical segments. A plurality of backbones each extends through a backbone channel of each segment to join the plurality of segments together. When joined together, the central bore of each of the plurality of cylindrical segments align to form an access channel. A distal segment is fixedly attached to each of the plurality of backbones such that an orientation of the distal segment can be adjusted by linear movement of one or more of the plurality of backbones through the plurality of cylindrical segments. Furthermore, when linear movement of the plurality of backbones is restricted, the shape of the access channel can be adjusted by external forces while maintaining the orientation of the distal segment.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: January 24, 2017
    Assignee: Vanderbilt University
    Inventors: Nabil Simaan, Andrea Bajo
  • Patent number: 9539726
    Abstract: Methods and systems are described for controlling movement of a continuum robot that includes a plurality of independently controlled segments along the length of the continuum robot. The continuum robot is inserted into a cavity of unknown dimensions or shape. A plurality of forces acting upon the continuum robot by the surrounding cavity are estimated. A positioning command indicating a desired movement of the distal end of the continuum robot is received from a manipulator control. The desired movement is augmented based, at least in part, on the estimated plurality of forces acting on the continuum robot such that movement is restricted to within safe boundaries of the surrounding cavity. The positioning of the continuum robot is then adjusted based on the augmented desired movement.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 10, 2017
    Assignee: Vanderbilt University
    Inventors: Nabil Simaan, Andrea Bajo, James L. Netterville, C. Gaelyn Garrett, Roger E. Goldman
  • Publication number: 20160354924
    Abstract: Methods and systems are described for controlling movement of a continuum robot that includes a plurality of independently controlled segments along the length of the continuum robot. The continuum robot is inserted into a cavity of unknown dimensions or shape. A plurality of forces acting upon the continuum robot by the surrounding cavity are estimated. A positioning command indicating a desired movement of the distal end of the continuum robot is received from a manipulator control. The desired movement is augmented based, at least in part, on the estimated plurality of forces acting on the continuum robot such that movement is restricted to within safe boundaries of the surrounding cavity. The positioning of the continuum robot is then adjusted based on the augmented desired movement.
    Type: Application
    Filed: May 6, 2014
    Publication date: December 8, 2016
    Applicant: Vanderbilt University
    Inventors: Nabil Simaan, Andrea Bajo, James L. Netterville, C. Gaelyn Garrett, Roger E. Goldman