Patents by Inventor Andrea Betti-Berutto

Andrea Betti-Berutto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10382083
    Abstract: An e-band transceiver includes a transmitter circuit and a receiver circuit. The transmitter circuit includes a surface mounted technology (SMT) module on which is mounted a silicon-germanium (SiGe) bipolar plus CMOS (BiCMOS) converter, a gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (pHEMT) output amplifier coupled to the SiGe BiCMOS converter, and a microstrip/waveguide interface coupled to the GaAs pHEMT output amplifier. The receiver circuit of the e-band transceiver includes a receiver-side SMT module on which is mounted a receiver-side SiGe BiCMOS converter, a GaAs pHEMT low noise amplifier coupled to the receiver-side SiGe BiCMOS converter, and a receiver-side microstrip/waveguide interface coupled to the receiver-side GaAs pHEMT low noise amplifier.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: August 13, 2019
    Assignee: INTEGRATED DEVICE TECHNOLOGY, INC.
    Inventors: Andrea Betti-Berutto, Sushil Kumar, Shawn Parker, Jonathan L. Kennedy, Christopher Saint, Michael Shaw, James Little, Jeff Illgner
  • Publication number: 20180375543
    Abstract: An e-band transceiver includes a transmitter circuit and a receiver circuit. The transmitter circuit includes a surface mounted technology (SMT) module on which is mounted a silicon-germanium (SiGe) bipolar plus CMOS (BiCMOS) converter, a gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (pHEMT) output amplifier coupled to the SiGe BiCMOS converter, and a microstrip/waveguide interface coupled to the GaAs pHEMT output amplifer. The receiver circuit of the e-band transceiver includes a receiver-side SMT module on which is mounted a receiver-side SiGe BiCMOS converter, a GaAs pHEMT low noise amplifier coupled to the receiver-side SiGe BiCMOS converter, and a receiver-side microstrip/waveguide interface coupled to the receiver-side GaAs pHEMT low noise amplifier.
    Type: Application
    Filed: August 30, 2018
    Publication date: December 27, 2018
    Inventors: Andrea BETTI-BERUTTO, Sushil KUMAR, Shawn PARKER, Jonathan L. Kennedy, Christopher Saint, Michael Shaw, James Little, Jeff Illgner
  • Patent number: 10075207
    Abstract: An e-band transceiver includes a transmitter circuit and a receiver circuit. The transmitter circuit includes a surface mounted technology (SMT) module on which is mounted a silicon-germanium (SiGe) bipolar plus CMOS (BiCMOS) converter, a gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (pHEMT) output amplifier coupled to the SiGe BiCMOS converter, and a microstrip/waveguide interface coupled to the GaAs pHEMT output amplifier. The receiver circuit of the e-band transceiver includes a receiver-side SMT module on which is mounted a receiver-side SiGe BiCMOS converter, a GaAs pHEMT low noise amplifier coupled to the receiver-side SiGe BiCMOS converter, and a receiver-side microstrip/waveguide interface coupled to the receiver-side GaAs pHEMT low noise amplifier.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: September 11, 2018
    Assignee: INTEGRATED DEVICE TECHNOLOGY, INC.
    Inventors: Andrea Betti-Berutto, Sushil Kumar, Shawn Parker, Jonathan L. Kennedy, Christopher Saint, Michael Shaw, James Little, Jeff Illgner
  • Publication number: 20160323008
    Abstract: An e-band transceiver includes a transmitter circuit and a receiver circuit. The transmitter circuit includes a surface mounted technology (SMT) module on which is mounted a silicon-germanium (SiGe) bipolar plus CMOS (BiCMOS) converter, a gallium arsenide (GaAs) pseudomorphic high-electron-mobility transistor (pHEMT) output amplifier coupled to the SiGe BiCMOS converter, and a microstrip/waveguide interface coupled to the GaAs pHEMT output amplifer. The receiver circuit of the e-band transceiver includes a receiver-side SMT module on which is mounted a receiver-side SiGe BiCMOS converter, a GaAs pHEMT low noise amplifier coupled to the receiver-side SiGe BiCMOS converter, and a receiver-side microstrip/waveguide interface coupled to the receiver-side GaAs pHEMT low noise amplifier.
    Type: Application
    Filed: May 2, 2016
    Publication date: November 3, 2016
    Inventors: Andrea Betti-Berutto, Sushil Kumar, Shawn Parker, Jonathan L. Kennedy, Christopher Saint, Michael Shaw, James Little, Jeff Illgner
  • Publication number: 20140270618
    Abstract: An optical sub assembly can include a distributed feedback (DFB) tunable laser and an optical modulator. Wavelength selection and phase adjustment portions of the DFB laser, as well as an electro-optic (EO) modulator can be formed from polymer waveguides including hyperpolarizable chromophores disposed on a single substrate.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: GIGOPTIX, INC.
    Inventors: RALUCA DINU, GUOMIN YU, CAILIN WEI, GIOVANNI DELROSSO, ERIC MILLER, AVISHAY KATZ, ANDREA BETTI-BERUTTO
  • Patent number: 6794934
    Abstract: Methods and circuitry for implementing monolithic high gain wideband amplifiers. The invention implements an amplifier with a limiter that also performs a signal dividing function. In a specific embodiment, the limiter is designed to make available two in-phase outputs that are then used to drive two gate input lines of a combiner distributed amplifier.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: September 21, 2004
    Assignee: iTerra Communications, LLC
    Inventors: Andrea Betti-Berutto, Stefano D'Agostino
  • Publication number: 20030112075
    Abstract: Methods and circuitry for implementing monolithic high gain wideband amplifiers. The invention implements an amplifier with a limiter that also performs a signal dividing function. In a specific embodiment, the limiter is designed to make available two in-phase outputs that are then used to drive two gate input lines of a combiner distributed amplifier.
    Type: Application
    Filed: December 14, 2001
    Publication date: June 19, 2003
    Applicant: iTerra Communications, LLC
    Inventors: Andrea Betti-Berutto, Stefano D'Agostino