Patents by Inventor Andrea M. Moore

Andrea M. Moore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6652506
    Abstract: A catheter handle includes a steering controller with a self-locking mechanism to be used in conjunction with a steerable catheter shaft. A compression spring portion of the self-locking mechanism is located between the steering controller and a handle shell and causes alternating protrusions and recesses on the steering controller and on the handle shell to engage, thus locking the steering controller into a fixed position with the handle shell. Through a single-handed operation, an operator enables steering controller rotation by applying a force to the steering controller, which disengages the steering controller from the handle shell. The operator then adjusts the profile of a distal-end region of the catheter by rotating the steering controller. When the desired profile of the distal-end region of the catheter has been obtained, the operator removes the force from the steering controller and the spring decompresses to reengage the steering controller with the handle shell.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: November 25, 2003
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Wade A. Bowe, Jesse Flores, Andrea M. Moore
  • Publication number: 20030208198
    Abstract: A catheter includes a steering mechanism for manipulating the distal end of the catheter to obtain a plurality of deflection profiles, a torque transfer system to enhance torque transfer from the handle to the distal tip, and a support system to reduce undesirable deformation of the distal-end region during steering. The torque transfer system includes a flat ribbon within the relatively flexible distal-end region to enhance torque transfer through the distal-end region of the catheter. The support system includes a compression cage and longitudinal struts that are located within the distal-end region of the catheter. The support system can support axial loads and deflect laterally in the direction of the steering, thereby reducing the amount of stretching and compression of the catheter sheath within the deflecting region.
    Type: Application
    Filed: May 28, 2003
    Publication date: November 6, 2003
    Inventors: Robert C. Hayzelden, John A. Simpson, Wade A. Bowe, Andrea M. Moore, Jesse Flores
  • Patent number: 6605086
    Abstract: A catheter includes a steering mechanism for manipulating the distal end of the catheter to obtain a plurality of deflection profiles, and a torque transfer system at the distal portion to enhance torque transfer from the handle to the distal tip. The steering mechanism includes two steering tendons. The steering tendons are attached to the distal-end region of the catheter. The steering tendons may be located approximately angularly aligned, thus causing the deflection profiles to be unidirectional. Alternatively, the steering tendons may be located angularly separated from each other, thus causing the deflection profiles to be bidirectional. In other aspects, the torque transfer system includes a flat ribbon within the relatively flexible distal-end region to enhance torque transfer through the distal-end region of the catheter.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: August 12, 2003
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Robert C. Hayzelden, John A. Simpson, Wade A. Bowe, Andrea M. Moore, Jesse Flores
  • Patent number: 6585718
    Abstract: A catheter includes a steering mechanism for manipulating the distal end of the catheter to obtain a plurality of deflection profiles, a torque transfer system to enhance torque transfer from the handle to the distal tip, and a support system to reduce undesirable deformation of the distal-end region during steering. The torque transfer system includes a flat ribbon within the relatively flexible distal-end region to enhance torque transfer through the distal-end region of the catheter. The support system includes a compression cage and longitudinal struts that are located within the distal-end region of the catheter. The support system can support axial loads and deflect laterally in the direction of the steering, thereby reducing the amount of stretching and compression of the catheter sheath within the deflecting region.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: July 1, 2003
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Robert C. Hayzelden, John A. Simpson, Wade A. Bowe, Andrea M. Moore, Jesse Flores
  • Publication number: 20020165534
    Abstract: A catheter includes a steering mechanism for manipulating the distal end of the catheter to obtain a plurality of deflection profiles, and a torque transfer system at the distal portion to enhance torque transfer from the handle to the distal tip. The steering mechanism includes two steering tendons. The steering tendons are attached to the distal-end region of the catheter. The steering tendons may be located approximately angularly aligned, thus causing the deflection profiles to be unidirectional. Alternatively, the steering tendons may be located angularly separated from each other, thus causing the deflection profiles to be bidirectional. In other aspects, the torque transfer system includes a flat ribbon within the relatively flexible distal-end region to enhance torque transfer through the distal-end region of the catheter.
    Type: Application
    Filed: May 2, 2001
    Publication date: November 7, 2002
    Inventors: Robert C. Hayzelden, John A. Simpson, Wade A. Bowe, Andrea M. Moore, Jesse Flores
  • Publication number: 20020165484
    Abstract: A catheter handle includes a steering controller with a self-locking mechanism to be used in conjunction with a steerable catheter shaft. A compression spring portion of the self-locking mechanism is located between the steering controller and a handle shell and causes alternating protrusions and recesses on the steering controller and on the handle shell to engage, thus locking the steering controller into a fixed position with the handle shell. Through a single-handed operation, an operator enables steering controller rotation by applying a force to the steering controller, which disengages the steering controller from the handle shell. The operator then adjusts the profile of a distal-end region of the catheter by rotating the steering controller. When the desired profile of the distal-end region of the catheter has been obtained, the operator removes the force from the steering controller and the spring decompresses to reengage the steering controller with the handle shell.
    Type: Application
    Filed: May 4, 2001
    Publication date: November 7, 2002
    Inventors: Wade A. Bowe, Jesse Flores, Andrea M. Moore
  • Publication number: 20020165461
    Abstract: A catheter includes a steering mechanism for manipulating the distal end of the catheter to obtain a plurality of deflection profiles, a torque transfer system to enhance torque transfer from the handle to the distal tip, and a support system to reduce undesirable deformation of the distal-end region during steering. The torque transfer system includes a flat ribbon within the relatively flexible distal-end region to enhance torque transfer through the distal-end region of the catheter. The support system includes a compression cage and longitudinal struts that are located within the distal-end region of the catheter. The support system can support axial loads and deflect laterally in the direction of the steering, thereby reducing the amount of stretching and compression of the catheter sheath within the deflecting region.
    Type: Application
    Filed: May 2, 2001
    Publication date: November 7, 2002
    Inventors: Robert C. Hayzelden, John A. Simpson, Wade A. Bowe, Andrea M. Moore, Jesse Flores