Patents by Inventor Andrea W. Chow

Andrea W. Chow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110063943
    Abstract: The present invention provides novel methods for controlling/manipulating materials flowing in a fluidic device. In particular, the methods of the invention create and utilize differences between dispersion rates and/or average velocity of materials in order to manipulate the materials.
    Type: Application
    Filed: November 17, 2010
    Publication date: March 17, 2011
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Andrea W. Chow, H. Garrett Wada
  • Patent number: 7846392
    Abstract: The present invention provides novel microfluidic devices and methods for preventing/ameliorating formation of precipitate blockages in microfluidic devices. In particular, the devices and methods of the invention utilize microchannels of specific cross-sectional configuration and of specific arrangement as well as application of AC current orthogonal to the direction of fluid flow, in order to prevent/ameliorate formation of precipitate blockages in microfluidic devices.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: December 7, 2010
    Assignee: Caliper Life Sciences, Inc.
    Inventor: Andrea W. Chow
  • Publication number: 20100129896
    Abstract: Systems for differentiating the lengths of nucleic acids of interest in a sample are provided. The system includes a microfluidic device, a detector, and a software system. The microfluidic device includes an amplification microchannel or microchamber containing a reaction mixture under conditions that provide one or more amplicons of the nucleic acid of interest. The detector is integral with or proximal to the microfluidic device and is configured to detect the amplicons as one or more signals from a homogenous mixture. The software system interprets one or more coincidentally detected signals to indicate lengths of one or more individual nucleic acid molecules of interest, thereby differentiating the lengths of the nucleic acids of interest.
    Type: Application
    Filed: January 8, 2010
    Publication date: May 27, 2010
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: MICHAEL R. KNAPP, Jill M. Baker, Andrea W. Chow, Anne R. Kopf-Sill, Michael Spaid
  • Patent number: 7645581
    Abstract: Methods for determining nucleic acid fragmentation status are provided. A nucleic acid of interest in a reaction mixture is contacted with two or more different probes complementary to sites separated by a point of potential fragmentation. The probes each comprise a detectable marker. The nucleic acid of interest is flowed into a detection region, where two or more coincident detectable marker signals from the probes are detected. Fragmentation status of the nucleic acid of interest is determined, coincident detection of signals from two or more of the different probes indicating the nucleic acid of interest is not fragmented between the probes.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: January 12, 2010
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Michael R. Knapp, Jill M. Baker, Andrea W. Chow, Anne R. Kopf-Sill, Michael A. Spaid
  • Patent number: 7566538
    Abstract: Nucleotides and nucleotide analogs are used in various sequencing by incorporation/sequencing by synthesis methods. Nucleotide analogs comprising 3?-blocking groups are used to provide reversible chain-termination for sequencing by synthesis. Typical blocking groups include phosphate groups and carbamate groups. Fluorescent nucleotides are used to perform sequencing by synthesis with detection by incorporation of the fluorescently labeled nucleotide, optionally followed by photobleaching and intercalating dyes are used to detect addition of a non-labeled nucleotide in sequencing by synthesis with detection by intercalation. Microfluidic devices, including particle arrays, are used in the sequencing methods.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: July 28, 2009
    Assignee: Caliper Lifesciences Inc.
    Inventors: J. Wallace Parce, Theo T. Nikiforov, Tammy Burd Mehta, Anne R. Kopf-Sill, Andrea W. Chow, Michael R. Knapp
  • Publication number: 20090137413
    Abstract: Arrays of flowable or fixed particle sets are used in microfluidic systems for performing assays and modifying hydrodynamic flow. Also provided are assays utilizing flowable or fixed particle sets within a microfluidic system, as well as kits, apparatus and integrated systems comprising arrays and array members.
    Type: Application
    Filed: October 30, 2007
    Publication date: May 28, 2009
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Tammy Burd Mehta, Anne R. Kopf-Sill, J. Wallace Parce, Andrea W. Chow, Luc J. Bousse, Michael R. Knapp, Theo T. Nikiforov, Steve Gallagher
  • Patent number: 7440684
    Abstract: A microfluidic system and method for employing it to control fluid temperatures of fluids residing within microchannels of a microfluidic device. The microfluidic device is provided with a top layer and a bottom layer and microchannels configured therebetween. Temperature of the fluid within the microchannels is controlled in various ways including the use of electrical resistive heating elements and by providing zones located in contact with the top and bottom layers of the microfluidic device for circulating heat transfer of fluid therein.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: October 21, 2008
    Inventors: Michael A. Spaid, Andrea W. Chow, Yevgeny Yurkovetsky, Seth R. Stern, Allen R. Boronkay, Morten Juel Jensen, Carlton F. Brooks, Ken Swartz
  • Publication number: 20080131904
    Abstract: Nucleotides and nucleotide analogs are used in various sequencing by incorporation/sequencing by synthesis methods. Nucleotide analogs comprising 3?-blocking groups are used to provide reversible chain-termination for sequencing by synthesis. Typical blocking groups include phosphate groups and carbamate groups. Fluorescent nucleotides are used to perform sequencing by synthesis with detection by incorporation of the fluorescently labeled nucleotide, optionally followed by photobleaching and intercalating dyes are used to detect addition of a non-labeled nucleotide in sequencing by synthesis with detection by intercalation. Microfluidic devices, including particle arrays, are used in the sequencing methods.
    Type: Application
    Filed: January 22, 2008
    Publication date: June 5, 2008
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: J. Wallace Parce, Theo T. Nikiforov, Tammy Burd Mehta, Anne R. Kopf-Sill, Andrea W. Chow, Michael R. Knapp
  • Patent number: 7344865
    Abstract: Nucleotides and nucleotide analogs are used in various sequencing by incorporation/sequencing by synthesis methods. Nucleotide analogs comprising 3?-blocking groups are used to provide reversible chain-termination for sequencing by synthesis. Typical blocking groups include phosphate groups and carbamate groups. Fluorescent nucleotides are used to perform sequencing by synthesis with detection by incorporation of the fluorescently labeled nucleotide, optionally followed by photobleaching and intercalating dyes are used to detect addition of a non-labeled nucleotide in sequencing by synthesis with detection by intercalation. Microfluidic devices, including particle arrays, are used in the sequencing methods.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: March 18, 2008
    Assignee: Caliper Life Sciences, Inc.
    Inventors: J. Wallace Parce, Theo T. Nikiforov, Tammy Burd Mehta, Anne R. Kopf-Sill, Andrea W. Chow, Michael R. Knapp
  • Patent number: 7247274
    Abstract: The present invention provides novel microfluidic devices and methods for preventing/ameliorating formation of precipitate blockages in microfluidic devices. In particular the devices and methods of the invention utilize microchannels of specific cross-sectional configuration and of specific arrangement as well as application of AC current orthogonal to the direction of fluid flow, in order to preventing/ameliorating formation of precipitate blockages in microfluidic devices.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: July 24, 2007
    Assignee: Caliper Technologies Corp.
    Inventor: Andrea W. Chow
  • Patent number: 7192559
    Abstract: Methods and devices for delivering fluids into microfluidic device body structures are described. The methods and devices include the use of fluid manifolds which are integrated or interchangeable with device body structures. Methods of fabricating manifolds are also provided.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: March 20, 2007
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Andrea W. Chow, Anne R. Kopf-Sill, J. Wallace Parce, Robert S. Dubrow
  • Patent number: 7171983
    Abstract: Improved microfluidic devices, systems, and methods allow selective transportation of fluids within microfluidic channels of a microfluidic network by applying, controlling, and varying pressures at a plurality of reservoirs. Modeling the microfluidic network as a series of nodes connected together by channel segments and determining the flow resistance characteristics of the channel segments may allow calculation of fluid flows through the channel segments resulting from a given pressure configuration at the reservoirs. To effect a desired flow within a particular channel or series of channels, reservoir pressures may be identified using the network model. Viscometers or other flow sensors may measure flow characteristics within the channels, and the measured flow characteristics can be used to calculate pressures to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems can optionally be used in conjunction with electrokinetic or other fluid transport mechanisms.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: February 6, 2007
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Ring-Ling Chien, J. Wallace Parce, Andrea W. Chow, Anne Kopf-Sill
  • Patent number: 7169277
    Abstract: Devices, systems and methods for use in separating sample materials into different fractions that employ bulk fluid flow for loading of samples followed by electrophoretic separation of the sample material. Devices employ configurations that optionally allow bulk sample loading with some or no displacement of a separation matrix within a separation conduit. Methods of using these devices, and systems that incorporate these devices are also envisioned.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: January 30, 2007
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Walter Ausserer, Luc J. Bousse, Robert S. Dubrow, Steven A. Sundberg, Andrea W. Chow, Benjamin N. Wang
  • Patent number: 7150814
    Abstract: Methods and apparatus for reducing adsorption in microscale devices are provided. In the methods and apparatus, an electrical current such as an alternating current is applied to materials under pressure-induced flow. Integrated systems for simultaneous control of current and pressure in a channel are also provided.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: December 19, 2006
    Assignee: Callper Life Sciences, Inc.
    Inventors: J. Wallace Parce, Andrea W. Chow
  • Patent number: 7105300
    Abstract: Nucleotides and nucleotide analogs are used in various sequencing by incorporation/sequencing by synthesis methods. Nucleotide analogs comprising 3?-blocking groups are used to provide reversible chain-termination for sequencing by synthesis. Typical blocking groups include phosphate groups and carbamate groups. Fluorescent nucleotides are used to perform sequencing by synthesis with detection by incorporation of the fluorescently labeled nucleotide, optionally followed by photobleaching and intercalating dyes are used to detect addition of a non-labeled nucleotide in sequencing by synthesis with detection by intercalation. Microfluidic devices, including particle arrays, are used in the sequencing methods.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: September 12, 2006
    Assignee: Caliper Life Sciences, Inc.
    Inventors: J. Wallace Parce, Theo T. Nikiforov, Tammy Burd Mehta, Anne R. Kopf-Sill, Andrea W. Chow, Michael R. Knapp
  • Patent number: 7040144
    Abstract: Microfluidic devices, systems, and methods measure viscosity, flow times, and/or pressures, other flow characteristics within the channels, and the measured flow characteristics can be used to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems, electrokinetic systems and/or other fluid transport mechanisms can generate the flow, controllably mix fluids, and the like.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: May 9, 2006
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Michael Spaid, Andrea W. Chow, Benjamin N. Wang, Ring-Ling Chien, J. Wallace Parce, Anne R. Kopf-Sill, Josh Molho, Anubhav Tripathi, Matthew B. Kerby
  • Patent number: 7001716
    Abstract: Methods for monitoring time dependent reactions that comprise providing a flow channel, typically microscale in dimension, flowing at least two reagents into the flow channel and varying the flow rate of the mixture through the flow channel. By increasing and/or decreasing the flow rate of the reagent mixture from the point of mixing to the point of detection, one alters the amount of reaction time, allowing monitoring reaction kinetics over time.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: February 21, 2006
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Samuel D. H. Chan, Ring-Ling Chien, Andrea W. Chow, Benjamin N. Wang
  • Patent number: 6990851
    Abstract: Microfluidic devices, systems, and methods measure viscosity, flow times, and/or other flow characteristics within the channels, and the measured flow characteristics can be used to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems, electrokinetic systems and/or other fluid transport mechanisms can generate the flow, controllably mix fluids, and the like.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: January 31, 2006
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Michael Spaid, Andrea W. Chow, Benjamin N. Wang, Ring-Ling Chien, J. Wallace Parce, Anne R. Kopf-Sill
  • Patent number: 6915679
    Abstract: Improved microfluidic devices, systems, and methods allow selective transportation of fluids within microfluidic channels of a microfluidic network by applying, controlling, and varying pressures at a plurality of reservoirs. Modeling the microfluidic network as a series of nodes connected together by channel segments and determining the flow resistance characteristics of the channel segments may allow calculation of fluid flows through the channel segments resulting from a given pressure configuration at the reservoirs. To effect a desired flow within a particular channel or series of channels, reservoir pressures may be identified using the network model. Viscometers or other flow sensors may measure flow characteristics within the channels, and the measured flow characteristics can be used to calculate pressures to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems can optionally be used in conjunction with electrokinetic or other fluid transport mechanisms.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: July 12, 2005
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Ring-Ling Chien, J. Wallace Parce, Andrea W. Chow, Anne Kopf-Sill
  • Patent number: 6881312
    Abstract: Analytical systems and methods that use a modular interface structure for providing an interface between a sample substrate and an analytical unit, where the analytical unit typically has a particular interface arrangement for implementing various analytical and control functions. Using a number of variants for each module of the modular interface structure advantageously provides cost effective and efficient ways to perform numerous tests using a particular substrate or class of substrates with a particular analytical and control systems interface arrangement. Improved optical illumination and detection system for simultaneously analyzing reactions or conditions in multiple parallel microchannels are also provided.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: April 19, 2005
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Anne R. Kopf-Sill, Andrea W. Chow, Peter C. Jann, Morten J. Jensen, Michael Spaid, Colin B. Kennedy, Michael J. Kennedy