Patents by Inventor Andrew A. Schnellinger

Andrew A. Schnellinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100101929
    Abstract: A water vending apparatus is disclosed. The water vending system includes a water vapor distillation apparatus and a dispensing device. The dispensing device is in fluid communication with the fluid vapor distillation apparatus and the product water from the fluid vapor distillation apparatus is dispensed by the dispensing device.
    Type: Application
    Filed: August 14, 2009
    Publication date: April 29, 2010
    Applicant: DEKA Products Limited Partnership
    Inventors: Dean Kamen, Chrsitopher C. Langenfeld, Ryan K. LaRocque, Andrew A. Schnellinger, Prashant Bhat, Stanley B. Smith, III, Otis L. Clapp, Jeremy M. Swerdlow
  • Patent number: 7654084
    Abstract: A device and method for controlling the flow of a gaseous fuel from a fuel supply to a pressurized combustion chamber. A fuel pump is included in the gas train from supply to chamber. The fuel pump increases the pressure of the gas to allow efficient injection into the chamber. The pump is modulated to control the fuel flow. Both alternating current and pulse-width-modulated direct current signals may be used to control the flow. The pump may be a piston pump or a diaphragm pump. Feedback may be provided from sensors that determine operating parameters of the engine and such sensor signals may be used by the controller to maintain a parameter, such as temperature, at a specified value. An acoustic filter can be included in the gas train to significantly reduce gas flow pulsations generated by the pump. This filter improves the uniformity of the combustion process.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: February 2, 2010
    Assignee: New Power Concepts LLC
    Inventors: Eric Jensen, Christopher C. Langenfeld, Scott Newell, Michael Norris, Jeffrey D. Renk, Andrew Schnellinger
  • Publication number: 20090145737
    Abstract: A fluid vapor distillation apparatus. The apparatus includes a source fluid input, and an evaporator condenser apparatus. The evaporator condenser apparatus includes a substantially cylindrical housing and a plurality of tubes in the housing. The source fluid input is fluidly connected to the evaporator condenser and the evaporator condenser transforms source fluid into steam and transforms compressed steam into product fluid. Also included in the fluid vapor distillation apparatus is a heat exchanger fluidly connected to the source fluid input and a product fluid output. The heat exchanger includes an outer tube and at least one inner tube. Also included in the fluid vapor distillation apparatus is a regenerative blower fluidly connected to the evaporator condenser. The regenerative blower compresses steam, and the compressed steam flows to the evaporative condenser where compressed steam is transformed into product fluid.
    Type: Application
    Filed: June 6, 2008
    Publication date: June 11, 2009
    Applicant: DEKA Products Limited Partnership
    Inventors: Dean Kamen, Christopher C. Langenfeld, Stanley B. Smith, III, Prashant Bhat, Ryan LaRocque, Andrew A. Schnellinger, Otis L. Clapp
  • Publication number: 20090025399
    Abstract: A fluid vapor distillation apparatus. The apparatus includes a source fluid input, and an evaporator condenser apparatus. The evaporator condenser apparatus includes a substantially cylindrical housing and a plurality of tubes in the housing. The source fluid input is fluidly connected to the evaporator condenser and the evaporator condenser transforms source fluid into steam and transforms compressed steam into product fluid. Also included in the fluid vapor distillation apparatus is a heat exchanger fluidly connected to the source fluid input and a product fluid output. The heat exchanger includes an outer tube and at least one inner tube. Also included in the fluid vapor distillation apparatus is a regenerative blower fluidly connected to the evaporator condenser. The regenerative blower compresses steam, and the compressed steam flows to the evaporative condenser where compressed steam is transformed into product fluid.
    Type: Application
    Filed: June 6, 2008
    Publication date: January 29, 2009
    Applicant: DEKA Produsts Limited Partnership
    Inventors: Dean Kamen, Christopher C. Langenfeld, Stanley B. Smith, III, Prashant Bhat, Ryan LaRocque, Andrew A. Schnellinger, Otis L. Clapp
  • Publication number: 20070028612
    Abstract: A device and method for controlling the flow of a gaseous fuel from a fuel supply to a pressurized combustion chamber. A fuel pump is included in the gas train from supply to chamber. The fuel pump increases the pressure of the gas to allow efficient injection into the chamber. The pump is modulated to control the fuel flow. Both alternating current and pulse-width-modulated direct current signals may be used to control the flow. The pump may be a piston pump or a diaphragm pump. Feedback may be provided from sensors that determine operating parameters of the engine and such sensor signals may be used by the controller to maintain a parameter, such as temperature, at a specified value. An acoustic filter can be included in the gas train to significantly reduce gas flow pulsations generated by the pump. This filter improves the uniformity of the combustion process.
    Type: Application
    Filed: September 25, 2006
    Publication date: February 8, 2007
    Applicant: New Power Concepts LLC
    Inventors: Eric Jensen, Christopher Langenfeld, Scott Newell, Michael Norris, Jeffrey Renk, Andrew Schnellinger
  • Patent number: 7111460
    Abstract: A device and method for controlling the flow of a gaseous fuel from a fuel supply to a pressurized combustion chamber. A fuel pump is included in the gas train from supply to chamber. The fuel pump increases the pressure of the gas to allow efficient injection into the chamber. The pump is modulated to control the fuel flow. Both alternating current and pulse-width-modulated direct current signals may be used to control the flow. The pump may be a piston pump or a diaphragm pump. Feedback may be provided from sensors that determine operating parameters of the engine and such sensor signals may be used by the controller to maintain a parameter, such as temperature, at a specified value. An acoustic filter can be included in the gas train to significantly reduce gas flow pulsations generated by the pump. This filter improves the uniformity of the combustion process.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: September 26, 2006
    Assignee: New Power Concepts LLC
    Inventors: Eric Jensen, Christopher C. Langenfeld, Scott Newell, Michael Norris, Jeffrey D. Renk, Andrew Schnellinger
  • Patent number: 6705081
    Abstract: A method for controlling the fuel-air ratio of a burner having a blower responsive to a blower drive signal for injecting air into the burner. The method is based at least on the concentration of a gas in an exhaust gas product of a combustion chamber of the burner and includes measuring the gas concentration in the exhaust gas product, deriving a gas concentration signal from the measured gas concentration, determining the fuel-air ratio from the gas concentration signal and the sign of the derivative of the gas concentration signal with respect to the blower drive signal, and controlling the fuel-air ratio by adjusting the air flow rate into the burner. The burner may be, for example, in a Stirling cycle engine.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: March 16, 2004
    Assignee: New Power Concepts LLC
    Inventors: Dean L. Kamen, Christopher C. Langenfeld, Michael Norris, William W. Ormerod, III, Andrew Schnellinger
  • Publication number: 20040033140
    Abstract: A device and method for controlling the flow of a gaseous fuel from a fuel supply to a pressurized combustion chamber. A fuel pump is included in the gas train from supply to chamber. The fuel pump increases the pressure of the gas to allow efficient injection into the chamber. The pump is modulated to control the fuel flow. Both alternating current and pulse-width-modulated direct current signals may be used to control the flow. The pump may be a piston pump or a diaphragm pump. Feedback may be provided from sensors that determine operating parameters of the engine and such sensor signals may be used by the controller to maintain a parameter, such as temperature, at a specified value. An acoustic filter can be included in the gas train to significantly reduce gas flow pulsations generated by the pump. This filter improves the uniformity of the combustion process.
    Type: Application
    Filed: August 18, 2003
    Publication date: February 19, 2004
    Applicant: New Power Concepts LLC
    Inventors: Eric R. Jensen, Christopher C. Langenfeld, Scott W. Newell, Michael Norris, Jeffrey D. Renk, Andrew Schnellinger
  • Publication number: 20010032452
    Abstract: A method for controlling the fuel-air ratio of a burner having a blower responsive to a blower drive signal for injecting air into the burner. The method is based at least on the concentration of a gas in an exhaust gas product of a combustion chamber of the burner and includes measuring the gas concentration in the exhaust gas product, deriving a gas concentration signal from the measured gas concentration, determining the fuel-air ratio from the gas concentration signal and the sign of the derivative of the gas concentration signal with respect to the blower drive signal, and controlling the fuel-air ratio by adjusting the air flow rate into the burner. The burner may be, for example, in a Stirling cycle engine.
    Type: Application
    Filed: May 11, 2001
    Publication date: October 25, 2001
    Applicant: New Power Concepts LLC
    Inventors: Dean L. Kamen, Christopher C. Langenfeld, Michael Norris, William W. Ormerod, Andrew Schnellinger