Patents by Inventor Andrew A. Wolff

Andrew A. Wolff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240215781
    Abstract: A docking station for a mobile cleaning robot can include a canister and a base configured to receive the mobile cleaning robot thereon, where the base can include a front portion and a back portion opposite the front portion. The base can include a vacuum port extending at least partially through the base. The canister can be connected to the back portion of the base and can be located at least partially above the base. The canister can include a debris bin connected to the vacuum port to receive debris therefrom and a fan compartment connected to a side wall of the debris bin and including a fan system operable to draw debris through the vacuum port and the debris bin.
    Type: Application
    Filed: March 12, 2024
    Publication date: July 4, 2024
    Inventors: Vincent Andrew Wolff, Brian W. Doughty, Leo Torrente, Travis Gschrey, Jack Zhang, Levi Fox, Rogelio Manfred Neumann, Celerick Stephens, James J. Mahoney, JR.
  • Patent number: 11930991
    Abstract: A docking station for a mobile cleaning robot can include a canister and a base configured to receive the mobile cleaning robot thereon, where the base can include a front portion and a back portion opposite the front portion. The base can include a vacuum port extending at least partially through the base. The canister can be connected to the back portion of the base and can be located at least partially above the base. The canister can include a debris bin connected to the vacuum port to receive debris therefrom and a fan compartment connected to a side wall of the debris bin and including a fan system operable to draw debris through the vacuum port and the debris bin.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: March 19, 2024
    Assignee: iRobot Corporation
    Inventors: Vincent Andrew Wolff, Brian W. Doughty, Leo Torrente, Travis Gschrey, Jack Zhang, Levi Fox, Rogelio Manfred Neumann, Celerick Stephens, James J. Mahoney, Jr.
  • Publication number: 20220386834
    Abstract: A docking station for a mobile cleaning robot can include a housing. The housing can define or comprise a pad receptacle and a pad dispenser. The pad receptacle can be configured to receive a soiled pad from a pad tray of the mobile cleaning robot. The pad dispenser can be configured to provide a fresh pad to the pad tray of the mobile cleaning robot.
    Type: Application
    Filed: May 13, 2022
    Publication date: December 8, 2022
    Inventors: Brian W. Doughty, Isaac Fowler, Leo Torrente, Vincent Andrew Wolff
  • Publication number: 20220061612
    Abstract: A docking station for a mobile cleaning robot can include a canister and a base configured to receive the mobile cleaning robot thereon, where the base can include a front portion and a back portion opposite the front portion. The base can include a vacuum port extending at least partially through the base. The canister can be connected to the back portion of the base and can be located at least partially above the base. The canister can include a debris bin connected to the vacuum port to receive debris therefrom and a fan compartment connected to a side wall of the debris bin and including a fan system operable to draw debris through the vacuum port and the debris bin.
    Type: Application
    Filed: September 2, 2020
    Publication date: March 3, 2022
    Inventors: Vincent Andrew Wolff, Brian W. Doughty, Leo Torrente, Travis Gschrey, Jack Zhang, Levi Fox, Rogelio Manfred Neumann, Celerick Stephens, James J. Mahoney, JR.
  • Patent number: 10272082
    Abstract: Provided is a method for treating ALS in a subject, comprising administering to the subject a therapeutically effective amount of riluzole and a therapeutically effective amount of CK-2017357. Also provided are methods of reducing the variability of riluzole exposure (e.g., Cmax and/or AUC24h) in a subject, methods of reducing the variability of riluzole exposure (e.g., Cmax and/or AUC24h) between two or more subjects, methods of decreasing the total daily dose of riluzole in a subject, methods of increasing the half-life of riluzole in a subject, methods for decreasing the frequency of riluzole dosing in the subject, and methods for reducing the incidence and/or severity of adverse events in a subject treated with riluzole.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: April 30, 2019
    Assignee: Cytokinetics, Inc.
    Inventors: Jesse Cedarbaum, John Mao, Fady Malik, Andrew A. Wolff
  • Patent number: 10124464
    Abstract: The invention provides methods of inhibiting corrosion of a substrate containing metal. The substrate can be in any suitable form. In some embodiments, the metal is cobalt. The methods can be used with semiconductor wafers in some embodiments. The invention also provides chemical-mechanical polishing compositions and methods of polishing a substrate. A corrosion inhibitor can be used in the methods and compositions disclosed herein. The inhibitor comprises an amphoteric surfactant, a sulfonate, a phosphonate, a carboxylate, an amino acid derivative, a phosphate ester, an isethionate, a sulfate, a sulfosuccinate, a sulfocinnimate, or any combination thereof.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: November 13, 2018
    Assignee: Cabot Microelectronics Corporation
    Inventors: Mary Cavanaugh, Steven Kraft, Andrew Wolff, Phillip W. Carter, Elise Sikma, Jeffrey Cross, Benjamin Petro
  • Patent number: 9850403
    Abstract: The invention provides a chemical-mechanical polishing composition comprising (a) abrasive particles, (b) a cobalt accelerator selected from a compound having the formula: NR1R2R3 wherein R1, R2, and R3 are independently selected from hydrogen, carboxyalkyl, substituted carboxyalkyl, hydroxyalkyl, substituted hydroxyalkyl and aminocarbonylalkyl, wherein none or one of R1, R2, and R3 are hydrogen; dicarboxyheterocycles; heterocyclylalkyl-?-amino acids; N-(amidoalkyl)amino acids; unsubstituted heterocycles; alkyl-substituted heterocycles; substituted-alkyl-substituted heterocycles; N-aminoalkyl-?-amino acids; and combinations thereof, (c) a cobalt corrosion inhibitor, (d) an oxidizing agent that oxidizes a metal, and (e) water, wherein the polishing composition has a pH of about 3 to about 8.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains cobalt.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: December 26, 2017
    Assignee: Cabot Microelectronics Corporation
    Inventors: Steven Kraft, Andrew Wolff, Phillip W. Carter, Kristin Hayes, Benjamin Petro
  • Patent number: 9834704
    Abstract: The invention provides a chemical-mechanical polishing composition comprising (a) abrasive particles, (b) a cobalt corrosion inhibitor, (c) a cobalt dishing control agent, wherein the cobalt dishing control agent comprises an anionic head group and a C13-C20 aliphatic tail group, (d) an oxidizing agent that oxidizes cobalt, and (e) water, wherein the polishing composition has a pH of about 3 to about 8.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains cobalt.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: December 5, 2017
    Assignee: Cabot Microelectronics Corporation
    Inventors: Steven Kraft, Andrew Wolff, Phillip W. Carter, Benjamin Petro
  • Publication number: 20170260421
    Abstract: The invention provides a chemical-mechanical polishing composition comprising (a) abrasive particles, (b) a cobalt accelerator selected from a compound having the formula: NR1R2R3 wherein R1, R2, and R3 are independently selected from hydrogen, carboxyalkyl, substituted carboxyalkyl, hydroxyalkyl, substituted hydroxyalkyl and aminocarbonylalkyl, wherein none or one of R1, R2, and R3 are hydrogen; dicarboxyheterocycles; heterocyclylalkyl-?-amino acids; N-(amidoalkyl)amino acids; unsubstituted heterocycles; alkyl-substituted heterocycles; substituted-alkyl-substituted heterocycles; N-aminoalkyl-?-amino acids; and combinations thereof, (c) a cobalt corrosion inhibitor, (d) an oxidizing agent that oxidizes a metal, and (e) water, wherein the polishing composition has a pH of about 3 to about 8.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains cobalt.
    Type: Application
    Filed: May 24, 2017
    Publication date: September 14, 2017
    Inventors: Steven KRAFT, Andrew WOLFF, Phillip W. CARTER, Kristin HAYES, Benjamin PETRO
  • Patent number: 9688885
    Abstract: The invention provides a chemical-mechanical polishing composition comprising (a) abrasive particles, (b) a cobalt accelerator selected from a compound having the formula: NR1R2R3 wherein R1, R2, and R3 are independently selected from hydrogen, carboxyalkyl, substituted carboxyalkyl, hydroxyalkyl, substituted hydroxyalkyl and aminocarbonylalkyl, wherein none or one of R1, R2, and R3 are hydrogen; dicarboxyheterocycles; heterocyclylalkyl-?-amino acids; N-(amidoalkyl)amino acids; unsubstituted heterocycles; alkyl-substituted heterocycles; substituted-alkyl-substituted heterocycles; N-aminoalkyl-?-amino acids; and combinations thereof, (c) a cobalt corrosion inhibitor, (d) an oxidizing agent that oxidizes a metal, and (e) water, wherein the polishing composition has a pH of about 3 to about 8.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains cobalt.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: June 27, 2017
    Assignee: Cabot Microelectronics Corporation
    Inventors: Steven Kraft, Andrew Wolff, Phillip W. Carter, Kristin Hayes, Benjamin Petro
  • Publication number: 20170107725
    Abstract: A modular mat comprises mirror image layers. At least one fitting receiver is integrally formed in a central portion of each layer, and at least one aperture is formed in a flange portion of each layer. The layers are congruently mated and affixed such that the fitting receiver of one layer is disposed through a corresponding aperture of the flange of the opposite layer. The outer surfaces of the layers comprise traction elements, which may be of different grades, such as industrial grade on one layer and pedestrian grade on the opposing layer. A floor covering system is also disclosed comprising a plurality of modular mats disposed in partially overlapping and interlocking relation with adjacent mats.
    Type: Application
    Filed: October 7, 2016
    Publication date: April 20, 2017
    Applicant: Signature Systems Group, LLC
    Inventors: Chad H. Jones, Andrew Sneeringer, Andrew Wolff, Daniel Himes, Bart Berghuis
  • Publication number: 20170042890
    Abstract: Provided herein are compositions and methods for reducing the decline in vital capacity in a subject by administering to the subject a skeletal muscle troponin activator. Also provided are compositions and methods for reducing respiratory decline in a subject, as measured by slow vital capacity (SVC), by administering to the subject a skeletal muscle troponin activator.
    Type: Application
    Filed: April 28, 2015
    Publication date: February 16, 2017
    Inventors: Jeremy M. SHEFNER, Andrew A. WOLFF, Fady MALIK, Jinsy A. ANDREWS
  • Patent number: 9506255
    Abstract: A modular mat comprises mirror image layers. At least one fitting receiver is integrally formed in a central portion of each layer, and at least one aperture is formed in a flange portion of each layer. The layers are congruently mated and affixed such that the fitting receiver of one layer is disposed through a corresponding aperture of the flange of the opposite layer. The outer surfaces of the layers comprise traction elements, which may be of different grades, such as industrial grade on one layer and pedestrian grade on the opposing layer. A floor covering system is also disclosed comprising a plurality of modular mats disposed in partially overlapping and interlocking relation with adjacent mats.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: November 29, 2016
    Assignee: Signature Systems Group, LLC
    Inventors: Chad H. Jones, Andrew Sneeringer, Andrew Wolff, Daniel Himes, Bart Berghuis
  • Publication number: 20160115353
    Abstract: The invention provides a chemical-mechanical polishing composition comprising (a) abrasive particles, (b) a cobalt accelerator selected from a compound having the formula: NR1R2R3 wherein R1, R2, and R3 are independently selected from hydrogen, carboxyalkyl, substituted carboxyalkyl, hydroxyalkyl, substituted hydroxyalkyl and aminocarbonylalkyl, wherein none or one of R1, R2, and R3 are hydrogen; dicarboxyheterocycles; heterocyclylalkyl-?-amino acids; N-(amidoalkyl)amino acids; unsubstituted heterocycles; alkyl-substituted heterocycles; substituted-alkyl-substituted heterocycles; N-aminoalkyl-?-amino acids; and combinations thereof, (c) a cobalt corrosion inhibitor, (d) an oxidizing agent that oxidizes a metal, and (e) water, wherein the polishing composition has a pH of about 3 to about 8.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains cobalt.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 28, 2016
    Inventors: Steven Kraft, Andrew Wolff, Phillip W. Carter, Kristin Hayes, Benjamin Petro
  • Publication number: 20160107289
    Abstract: The invention provides methods of inhibiting corrosion of a substrate containing metal. The substrate can be in any suitable form. In some embodiments, the metal is cobalt. The methods can be used with semiconductor wafers in some embodiments. The invention also provides chemical-mechanical polishing compositions and methods of polishing a substrate. A corrosion inhibitor can be used in the methods and compositions disclosed herein. The inhibitor comprises an amphoteric surfactant, a sulfonate, a phosphonate, a carboxylate, an amino acid derivative, a phosphate ester, an isethionate, a sulfate, a sulfosuccinate, a sulfocinnimate, or any combination thereof.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 21, 2016
    Inventors: Mary Cavanaugh, Steven Kraft, Andrew Wolff, Phillip W. Carter, Elise Sikma, Jeffrey Cross
  • Publication number: 20160108285
    Abstract: The invention provides a chemical-mechanical polishing composition comprising (a) abrasive particles, (b) a cobalt corrosion inhibitor, (c) a cobalt dishing control agent, wherein the cobalt dishing control agent comprises an anionic head group and a C13-C20 aliphatic tail group, (d) an oxidizing agent that oxidizes cobalt, and (e) water, wherein the polishing composition has a pH of about 3 to about 8.5. The invention further provides a method of chemically-mechanically polishing a substrate with the inventive chemical-mechanical polishing composition. Typically, the substrate contains cobalt.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 21, 2016
    Inventors: Steven Kraft, Andrew Wolff, Phillip W. Carter
  • Publication number: 20140378465
    Abstract: Methods are provided for treating diabetes, lowering plasma level of HbA1c, glucose plasma levels, total cholesterol plasma level, and/or triglyceride plasma level while increasing HDL cholesterol levels and delaying onset of diabetic retinopathy in a diabetic, pre-diabetic, or non-diabetic mammal while minimizing undesirable side effects.
    Type: Application
    Filed: September 3, 2014
    Publication date: December 25, 2014
    Inventors: MARKUS JERLING, ANDREW A. WOLFF
  • Patent number: 8883750
    Abstract: Methods are provided for treating diabetes, lowering plasma level of HbA1c, glucose plasma levels, total cholesterol plasma level, and/or triglyceride plasma level while increasing HDL cholesterol levels and delaying onset of diabetic retinopathy in a diabetic, pre-diabetic, or non-diabetic mammal while minimizing undesirable side effects.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: November 11, 2014
    Assignee: Gilead Sciences, Inc.
    Inventors: Andrew A. Wolff, Markus Jerling
  • Patent number: D832468
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: October 30, 2018
    Assignee: Signature Systems Group, LLC
    Inventors: Chad H. Jones, Andrew Sneeringer, Andrew Wolff, Daniel Himes, Bart Berghuis
  • Patent number: D928993
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: August 24, 2021
    Assignee: Signature Systems Group, LLC
    Inventors: Chad H Jones, Andrew Sneeringer, Andrew Wolff, Daniel Himes, Bart Berghuis