Patents by Inventor Andrew D. Fernandez

Andrew D. Fernandez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11871098
    Abstract: Methods and apparatus are disclosed for selecting a lens control mode for a camera in external magnetic fields or other types of non-magnetic interference. In embodiments, when the camera is activated, a test of a position sensor for the camera lens is performed by moving the camera lens through a range of positions and collecting values from the sensor. In embodiments, the sensor readings are analyzed to determine conditions such as (a) whether the sensor is saturated by an external magnetic field or non-magnetic interference, (b) whether the sensor's readings are within an error margin, and (c) whether a computed position offset for the sensor is valid. Based on the analysis, the camera is placed into a first control mode where movement of the lens is controlled using the position sensor, or a second control mode where lens movement is controlled without the position sensor.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: January 9, 2024
    Assignee: Apple Inc.
    Inventors: Abhishek Dhanda, Andrew D. Fernandez, Arathi S. Bale, David C. Beard, Santiago Alban
  • Patent number: 11856293
    Abstract: Various embodiments disclosed herein include techniques for determining autofocus for a camera on a mobile device. In some instances, depth imaging is used to assist in determining a focus position for the camera through an autofocus process. For example, a determination of depth may be used to determine a focus position for the camera. In another example, the determination of depth may be used to assist another autofocus process.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: December 26, 2023
    Assignee: Apple Inc.
    Inventors: Mark N. Gamadia, Abhishek Dhanda, Gregory Guyomarc'h, Andrew D. Fernandez, Moshe Laifenfeld
  • Publication number: 20230094971
    Abstract: Various embodiments disclosed herein include techniques for determining autofocus for a camera on a mobile device. In some instances, depth imaging is used to assist in determining a focus position for the camera through an autofocus process. For example, a determination of depth may be used to determine a focus position for the camera. In another example, the determination of depth may be used to assist another autofocus process.
    Type: Application
    Filed: December 2, 2022
    Publication date: March 30, 2023
    Applicant: Apple Inc.
    Inventors: Mark N. Gamadia, Abhishek Dhanda, Gregory Guyomarc'h, Andrew D. Fernandez, Moshe Laifenfeld
  • Patent number: 11616899
    Abstract: A camera system may include one or more controllers to perform in-field monitoring of autofocus performance and instability mitigation. The controllers may monitor one or more parameters associated with adjustment of a relative position between a lens group and an image sensor and/or one or more images. The controllers may analyze the parameters and/or images to calculate various metrics. The controllers may evaluate the metrics with respect to corresponding thresholds. The controllers may detect, based at least in part of the evaluation the metrics, one or more instability events associated with controller performance degradation. In response to detecting the instability events, the controllers may perform one or more remedial actions to mitigate the controller performance degradation.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: March 28, 2023
    Assignee: Apple Inc.
    Inventors: Abhishek Dhanda, Yunfeng Li, Santiago Alban, Andrew D. Fernandez
  • Patent number: 11523043
    Abstract: Various embodiments disclosed herein include techniques for determining autofocus for a camera on a mobile device. In some instances, depth imaging is used to assist in determining a focus position for the camera through an autofocus process. For example, a determination of depth may be used to determine a focus position for the camera. In another example, the determination of depth may be used to assist another autofocus process.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: December 6, 2022
    Assignee: Apple Inc.
    Inventors: Mark N. Gamadia, Abhishek Dhanda, Gregory Guyomarc'h, Andrew D. Fernandez, Moshe Laifenfeld
  • Publication number: 20220116544
    Abstract: Various embodiments disclosed herein include techniques for determining autofocus for a camera on a mobile device. In some instances, depth imaging is used to assist in determining a focus position for the camera through an autofocus process. For example, a determination of depth may be used to determine a focus position for the camera. In another example, the determination of depth may be used to assist another autofocus process.
    Type: Application
    Filed: September 24, 2021
    Publication date: April 14, 2022
    Applicant: Apple Inc.
    Inventors: Mark N. Gamadia, Abhishek Dhanda, Gregory Guyomarc'h, Andrew D. Fernandez, Moshe Laifenfeld
  • Patent number: 11212462
    Abstract: Methods and apparatus for detecting and correcting for lens tilt in cameras. The common mode signal may be derived from autofocus position (AP) sensors and used as a measure of the autofocus position of the lens on the Z axis. The differential mode signal may also be derived from the AP sensor signals. The differential mode signal may indicate that the lens is or is not tilted, and if tilted may indicate the direction and magnitude of the tilt. The differential mode signal may be used to apply a tilt correction transform to image data based on the strength and direction of the signal. The differential mode signal may also be used to translate the lens on an axis orthogonal to the Z axis to partially correct for lens tilt to align the image plane with the photosensor.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: December 28, 2021
    Assignee: Apple Inc.
    Inventors: Ali Husain Y. Sirohiwala, Andrew D. Fernandez
  • Publication number: 20210281726
    Abstract: Methods and apparatus are disclosed for selecting a lens control mode for a camera in external magnetic fields or other types of non-magnetic interference. In embodiments, when the camera is activated, a test of a position sensor for the camera lens is performed by moving the camera lens through a range of positions and collecting values from the sensor. In embodiments, the sensor readings are analyzed to determine conditions such as (a) whether the sensor is saturated by an external magnetic field or non-magnetic interference, (b) whether the sensor's readings are within an error margin, and (c) whether a computed position offset for the sensor is valid. Based on the analysis, the camera is placed into a first control mode where movement of the lens is controlled using the position sensor, or a second control mode where lens movement is controlled without the position sensor.
    Type: Application
    Filed: May 21, 2021
    Publication date: September 9, 2021
    Applicant: Apple Inc.
    Inventors: Abhishek Dhanda, Andrew D. Fernandez, Arathi S. Bale, David C. Beard, Santiago Alban
  • Patent number: 11019241
    Abstract: Methods and apparatus are disclosed for selecting a lens control mode for a camera in external magnetic fields or other types of non-magnetic interference. In embodiments, when the camera is activated, a test of a position sensor for the camera lens is performed by moving the camera lens through a range of positions and collecting values from the sensor. In embodiments, the sensor readings are analyzed to determine conditions such as (a) whether the sensor is saturated by an external magnetic field or non-magnetic interference, (b) whether the sensor's readings are within an error margin, and (c) whether a computed position offset for the sensor is valid. Based on the analysis, the camera is placed into a first control mode where movement of the lens is controlled using the position sensor, or a second control mode where lens movement is controlled without the position sensor.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: May 25, 2021
    Assignee: Apple Inc.
    Inventors: Abhishek Dhanda, Andrew D. Fernandez, Arathi S. Bale, David C. Beard, Santiago Alban
  • Patent number: 10578704
    Abstract: A method and system determine a location of a signal emitter. A plurality of sensors each receives a signal transmitted by the signal emitter. One of the received signals is processed to produce a template describing an estimate of the signal transmitted by the signal emitter. The template is cross-correlated with at least some of the signals received at the sensors. At least one cross-correlation feature is identified from each cross-correlation and the cross-correlation features are used to determine the location of the signal emitter.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: March 3, 2020
    Assignee: Keysight Technologies, Inc.
    Inventors: Andrew D. Fernandez, Lawrence Dale Bennett
  • Patent number: 9236836
    Abstract: A method is provided for processing a radio frequency (RF) signal output by a device under test (DUT), the RF signal having first comb lines in a predetermined first order. The method includes mixing and filtering the RF signal with a multi-tone local oscillator (LO) signal to provide an intermediate frequency (IF) signal having second comb lines corresponding to the first comb lines, where the mixing operation scrambles in frequency the first comb lines of the RF signal such that the second comb lines of the IF signal are in a second order different from the predetermined first order; digitizing the IF signal at a predetermined sampling rate; and descrambling the digitized IF signal with time domain signal processing such that the second comb lines of the digitized IF signal are arranged in the predetermined first order.
    Type: Grant
    Filed: December 24, 2013
    Date of Patent: January 12, 2016
    Assignee: Keysight Technologies, Inc.
    Inventor: Andrew D. Fernandez
  • Publication number: 20150180416
    Abstract: A method is provided for processing a radio frequency (RF) signal output by a device under test (DUT), the RF signal having first comb lines in a predetermined first order. The method includes mixing and filtering the RF signal with a multi-tone local oscillator (LO) signal to provide an intermediate frequency (IF) signal having second comb lines corresponding to the first comb lines, where the mixing operation scrambles in frequency the first comb lines of the RF signal such that the second comb lines of the IF signal are in a second order different from the predetermined first order; digitizing the IF signal at a predetermined sampling rate; and descrambling the digitized IF signal with time domain signal processing such that the second comb lines of the digitized IF signal are arranged in the predetermined first order.
    Type: Application
    Filed: December 24, 2013
    Publication date: June 25, 2015
    Inventor: Andrew D. Fernandez
  • Patent number: 7671772
    Abstract: In one embodiment, at least one parameter set for at least one harmonic of a continuous wave (CW) signal is digitally generated in response to a parameter set for the CW signal. In response to the parameter set for the CW signal, the CW signal is synthesized; and in response to the at least one parameter set for the at least one harmonic of the CW signal, at least one nulling tone is synthesized. The CW signal and the at least one nulling tone are amplified; and the amplified CW signal and the at least one amplified nulling tone are summed to produce a linearized amplified CW signal. Other embodiments are also described.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: March 2, 2010
    Assignee: Agilent Technologies, Inc.
    Inventors: Andrew D. Fernandez, Nick Tutillaro
  • Publication number: 20090088872
    Abstract: In one embodiment, at least one parameter set for at least one harmonic of a continuous wave (CW) signal is digitally generated in response to a parameter set for the CW signal. In response to the parameter set for the CW signal, the CW signal is synthesized; and in response to the at least one parameter set for the at least one harmonic of the CW signal, at least one nulling tone is synthesized. The CW signal and the at least one nulling tone are amplified; and the amplified CW signal and the at least one amplified nulling tone are summed to produce a linearized amplified CW signal. Other embodiments are also described.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Inventors: Andrew D. Fernandez, Nick Tutillaro
  • Publication number: 20090058521
    Abstract: A method, apparatus, and computer program product to reduce nonlinear signal distortion of a primary signal within an electronic device is provided. An example method includes the steps of: applying at least one stimulus signal to excite distortion; analyzing nonlinear effects in the distorted stimulus signal; modeling distortion as a function of the stimulus signal; and creating a correction signal using the distortion model and the primary signal.
    Type: Application
    Filed: August 31, 2007
    Publication date: March 5, 2009
    Inventor: Andrew D. Fernandez
  • Publication number: 20090052556
    Abstract: Wideband signal generation systems and methods are provided which employ frequency interleaving for generating wideband signals. A general method increases a digitally synthesized signal's bandwidth by frequency interleaving multiple digitally synthesized signal sources of narrower bandwidth. Frequency interleaving creates a continuous wideband signal by summing multiple narrower band signals that overlap in frequency. According to certain embodiments, digital signal processing (DSP) and analog mixing are used to create the multiple narrower band signals such that a high fidelity, continuous wideband signal is produced when the multiple narrower band signals are summed.
    Type: Application
    Filed: August 23, 2007
    Publication date: February 26, 2009
    Inventor: Andrew D. Fernandez
  • Patent number: 7148828
    Abstract: A method for calibrating time interleaved samplers comprising applying a calibration signal to a time-interleaved sampling device, wherein the signal is coherent with at least one sample clock on the device and is periodic and has a predetermined spectral content and frequency, sampling, by said time-interleaved sampling device, the calibration signal at a plurality of phases to form samples, averaging the formed samples, and calculating the phase error of each sample based on the average calibration signal sample.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: December 12, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Andrew D. Fernandez, Vamsi K. Srikantam, Robert M. R. Neff, Kenneth D. Poulton