Patents by Inventor Andrew D. W. McKie

Andrew D. W. McKie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10419154
    Abstract: The concepts, systems and methods described herein are directed towards encrypting optical signals prior to the optical signals being sensed, for example, by a sensor. An optical phased array (OPA) may be disposed between an optical chain and a sensor to encrypt an optical signal being sensed before the signal is received at the sensor. The method includes receiving an optical signal having a plurality of beams organized in a first arrangement at an optical phased array, encrypting the optical signal in the optical phased array by steering or otherwise phase shifting the plurality of beams from the first arrangement to a second arrangement, transmitting the plurality of beams in the second arrangement from the optical phased array to a sensor and sensing the encrypted optical signal having the plurality of beams in the second arrangement at the sensor.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: September 17, 2019
    Assignee: Raytheon Company
    Inventors: John M. Bergeron, Andrew D. W. McKie, Carl E. Buczala
  • Patent number: 10411435
    Abstract: A system includes a master oscillator configured to generate a low-power optical beam. The system also includes a planar waveguide (PWG) amplifier configured to generate a high-power optical beam using the low-power optical beam. The PWG amplifier has a larger dimension in a slow-axis direction and a smaller dimension in a fast-axis direction. The system further includes at least one adaptive optic (AO) element configured to modify the low-power optical beam along the slow-axis direction and to modify the low-power optical beam along the fast-axis direction. In addition, the system includes a feedback loop configured to control the at least one AO element. The modification in the slow-axis direction can compensate for thermal-based distortions created by the PWG amplifier, and the modification in the fast-axis direction can compensate for optical misalignment associated with the master oscillator and the PWG amplifier.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: September 10, 2019
    Assignee: Raytheon Company
    Inventors: David M. Filgas, Andrew D. W. McKie
  • Publication number: 20180254609
    Abstract: A system includes a master oscillator configured to generate a low-power optical beam. The system also includes a planar waveguide (PWG) amplifier configured to generate a high-power optical beam using the low-power optical beam. The PWG amplifier has a larger dimension in a slow-axis direction and a smaller dimension in a fast-axis direction. The system further includes at least one adaptive optic (AO) element configured to modify the low-power optical beam along the slow-axis direction and to modify the low-power optical beam along the fast-axis direction. In addition, the system includes a feedback loop configured to control the at least one AO element. The modification in the slow-axis direction can compensate for thermal-based distortions created by the PWG amplifier, and the modification in the fast-axis direction can compensate for optical misalignment associated with the master oscillator and the PWG amplifier.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 6, 2018
    Inventors: David M. Filgas, Andrew D.W. McKie
  • Patent number: 10056731
    Abstract: A system includes a master oscillator configured to generate a low-power optical beam. The system also includes a planar waveguide (PWG) amplifier configured to amplify the low-power beam into a high-power output optical beam, where the PWG amplifier has a larger dimension in an unguided direction and a smaller dimension in a transverse guided direction. The system further includes an adaptive optic configured to pre-distort the low-power optical beam substantially along a single dimension prior to injection of the low-power optical beam into the PWG amplifier in order to compensate for thermal-based distortions created by the PWG amplifier. The single dimension represents the unguided direction. In addition, the system includes a feedback loop configured to control the adaptive optic.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: August 21, 2018
    Assignee: Raytheon Company
    Inventors: David M. Filgas, Brian F. Boland, Andrew D. W. McKie
  • Publication number: 20180212393
    Abstract: A system includes a master oscillator configured to generate a low-power optical beam. The system also includes a planar waveguide (PWG) amplifier configured to amplify the low-power beam into a high-power output optical beam, where the PWG amplifier has a larger dimension in an unguided direction and a smaller dimension in a transverse guided direction. The system further includes an adaptive optic configured to pre-distort the low-power optical beam substantially along a single dimension prior to injection of the low-power optical beam into the PWG amplifier in order to compensate for thermal-based distortions created by the PWG amplifier. The single dimension represents the unguided direction. In addition, the system includes a feedback loop configured to control the adaptive optic.
    Type: Application
    Filed: August 24, 2016
    Publication date: July 26, 2018
    Inventors: David M. Filgas, Brian F. Boland, Andrew D. W. McKie
  • Patent number: 9971183
    Abstract: An assembly having a liquid crystal molecule section, a reflector section, disposed on the liquid crystal molecule section, having a stack of dielectric layers having alternating higher and lower indices of refraction; and an array of electrode sections disposed between a pair of the dielectric layers, one of said pair of dielectric layers having a higher index than the other one of said pair of dielectric layers. The electrodes in the array are interdigitated electrode for producing electric fields parallel to the array. The reflector section is disposed between the liquid crystal molecule section and a thermally conductive substrate.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: May 15, 2018
    Assignee: Raytheon Company
    Inventors: Daniel P. Resler, Andrew D. W. McKie, Linda A. Palmaccio
  • Publication number: 20170366293
    Abstract: The concepts, systems and methods described herein are directed towards encrypting optical signals prior to the optical signals being sensed, for example, by a sensor. An optical phased array (OPA) may be disposed between an optical chain and a sensor to encrypt an optical signal being sensed before the signal is received at the sensor. The method includes receiving an optical signal having a plurality of beams organized in a first arrangement at an optical phased array, encrypting the optical signal in the optical phased array by steering or otherwise phase shifting the plurality of beams from the first arrangement to a second arrangement, transmitting the plurality of beams in the second arrangement from the optical phased array to a sensor and sensing the encrypted optical signal having the plurality of beams in the second arrangement at the sensor.
    Type: Application
    Filed: June 20, 2016
    Publication date: December 21, 2017
    Applicant: Raytheon Company
    Inventors: John M. Bergeron, Andrew D.W. McKie, Carl E. Buczala
  • Patent number: 6496268
    Abstract: A laser-based technique to determine glass thickness employs a pulsed laser to induce an ultrasonic wave between the surfaces of a region of glass, causing the surfaces to move in and out at a characteristic frequency. The surface motion is monitored to determine the characteristic frequency, which is proportional to the thickness of the glass in the region of the ultrasonic wave. The pulsed laser produces a short duration pulse that illuminates a surface of the glass, which is absorbed within the glass to cause a rapid thermal expansion that generates the ultrasonic wave. The surface motion induced by the ultrasonic wave is preferably detected with a laser interferometer system, the output of which is analyzed to determine the surface motion's characteristic frequency.
    Type: Grant
    Filed: July 18, 2000
    Date of Patent: December 17, 2002
    Assignees: Innovative Technology Licensing, LLC, Lasson Technologies, Inc.
    Inventors: Andrew D. W. McKie, Marvin B. Klein, Bruno Pouet, Frank Jyh-Herng Shih