Patents by Inventor Andrew Grenville
Andrew Grenville has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10782610Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.Type: GrantFiled: October 16, 2017Date of Patent: September 22, 2020Assignee: Inpria CorporationInventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
-
Publication number: 20200292937Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.Type: ApplicationFiled: May 28, 2020Publication date: September 17, 2020Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
-
Publication number: 20200225578Abstract: High etch contrast materials provide the basis for using pre-patterned template structure with a template hardmask having periodic holes and filler within the holes that provides the basis for rapidly obtaining high resolution patterns guided by the template and high etch contrast resist. Methods are described for performing the radiation lithography, e.g., EUV radiation lithography, using the pre-patterned templates. Also, methods are described for forming the templates. The materials for forming the templates are described.Type: ApplicationFiled: April 1, 2020Publication date: July 16, 2020Inventors: Jason K. Stowers, Andrew Grenville
-
Patent number: 10649328Abstract: High etch contrast materials provide the basis for using pre-patterned template structure with a template hardmask having periodic holes and filler within the holes that provides the basis for rapidly obtaining high resolution patterns guided by the template and high etch contrast resist. Methods are described for performing the radiation lithography, e.g., EUV radiation lithography, using the pre-patterned templates. Also, methods are described for forming the templates. The materials for forming the templates are described.Type: GrantFiled: March 10, 2017Date of Patent: May 12, 2020Assignee: Inpria CorporationInventors: Jason K. Stowers, Andrew Grenville
-
Publication number: 20190369489Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.Type: ApplicationFiled: August 9, 2019Publication date: December 5, 2019Inventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy T. Anderson, Andrew Grenville
-
Patent number: 10416554Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.Type: GrantFiled: June 13, 2018Date of Patent: September 17, 2019Assignee: Inpria CorporationInventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy T. Anderson, Andrew Grenville
-
Publication number: 20180307137Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.Type: ApplicationFiled: June 13, 2018Publication date: October 25, 2018Inventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy T. Anderson, Andrew Grenville
-
Patent number: 10025179Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.Type: GrantFiled: December 29, 2015Date of Patent: July 17, 2018Assignee: Inpria CorporationInventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy T. Anderson, Andrew Grenville
-
Publication number: 20180039172Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.Type: ApplicationFiled: October 16, 2017Publication date: February 8, 2018Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
-
Patent number: 9823564Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.Type: GrantFiled: September 18, 2015Date of Patent: November 21, 2017Assignee: Inpria CorporationInventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
-
Publication number: 20170261850Abstract: High etch contrast materials provide the basis for using pre-patterned template structure with a template hardmask having periodic holes and filler within the holes that provides the basis for rapidly obtaining high resolution patterns guided by the template and high etch contrast resist. Methods are described for performing the radiation lithography, e.g., EUV radiation lithography, using the pre-patterned templates. Also, methods are described for forming the templates. The materials for forming the templates are described.Type: ApplicationFiled: March 10, 2017Publication date: September 14, 2017Inventors: Jason K. Stowers, Andrew Grenville
-
Publication number: 20160216606Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.Type: ApplicationFiled: December 29, 2015Publication date: July 28, 2016Inventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy T. Anderson, Andrew Grenville
-
Patent number: 9310684Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.Type: GrantFiled: August 22, 2013Date of Patent: April 12, 2016Assignee: Inpria CorporationInventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy Anderson, Andrew Grenville
-
Patent number: 9281207Abstract: Solution processible hardmasks are described that can be formed from aqueous precursor solutions comprising polyoxometal clusters and anions, such as polyatomic anions. The solution processible metal oxide layers are generally placed under relatively thin etch resist layers to provide desired etch contrast with underlying substrates and/or antireflective properties. In some embodiments, the metal oxide hardmasks can be used along with an additional hardmask and/or antireflective layers. The metal oxide hardmasks can be etched with wet or dry etching. Desirable processing improvements can be obtained with the solution processible hardmasks.Type: GrantFiled: February 28, 2012Date of Patent: March 8, 2016Assignee: Inpria CorporationInventors: Jason K. Stowers, Stephen T. Meyers, Michael Kocsis, Douglas A. Keszler, Andrew Grenville
-
Publication number: 20160011505Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.Type: ApplicationFiled: September 18, 2015Publication date: January 14, 2016Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
-
Patent number: 9176377Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.Type: GrantFiled: August 5, 2010Date of Patent: November 3, 2015Assignee: Inpria CorporationInventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
-
Publication number: 20150056542Abstract: Organometallic solutions have been found to provide high resolution radiation based patterning using thin coatings. The patterning can involve irradiation of the coated surface with a selected pattern and developing the pattern with a developing agent to form the developed image. The patternable coatings may be susceptible to positive-tone patterning or negative-tone patterning based on the use of an organic developing agent or an aqueous acid or base developing agent. The radiation sensitive coatings can comprise a metal oxo/hydroxo network with organic ligands. A precursor solution can comprise an organic liquid and metal polynuclear oxo-hydroxo cations with organic ligands having metal carbon bonds and/or metal carboxylate bonds.Type: ApplicationFiled: August 22, 2013Publication date: February 26, 2015Inventors: Stephen T. Meyers, Douglas A. Keszler, Kai Jiang, Jeremy Anderson, Andrew Grenville
-
Patent number: 8415000Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.Type: GrantFiled: October 28, 2011Date of Patent: April 9, 2013Assignee: Inpria CorporationInventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
-
Publication number: 20120223418Abstract: Solution processible hardmasks are described that can be formed from aqueous precursor solutions comprising polyoxometal clusters and anions, such as polyatomic anions. The solution processible metal oxide layers are generally placed under relatively thin etch resist layers to provide desired etch contrast with underlying substrates and/or antireflective properties. In some embodiments, the metal oxide hardmasks can be used along with an additional hardmask and/or antireflective layers. The metal oxide hardmasks can be etched with wet or dry etching. Desirable processing improvements can be obtained with the solution processible hardmasks.Type: ApplicationFiled: February 28, 2012Publication date: September 6, 2012Inventors: Jason K. Stowers, Stephen T. Meyers, Michael Kocsis, Douglas A. Keszler, Andrew Grenville
-
Publication number: 20120070613Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.Type: ApplicationFiled: October 28, 2011Publication date: March 22, 2012Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville